Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257369

RESUMO

Corneal diseases are a major cause of vision loss, often associated with aging, trauma and disease. Damage to corneal sensory innervation leads to discomfort and pain. Environmental stressors, such as short-wavelength light, can induce oxidative stress that alters mitochondrial function and affects cell and tissue homeostasis, including corneal innervation. Cellular antioxidant mechanisms may attenuate oxidative stress. This study investigates crocin, a derivative of saffron, as a potential antioxidant therapy. In vitro rat trigeminal sensory ganglion neurons were exposed to both sodium azide and blue light overexposure as a model of oxidative damage. Crocin was used as a neuroprotective agent. Mitochondrial and cytoskeletal markers were studied by immunofluorescence analysis to determine oxidative damage and neuroprotection. In vivo corneal innervation degeneration was evaluated in cornea whole mount preparations using Sholl analyses. Blue light exposure induces oxidative stress that affects trigeminal neuron mitochondria and alters sensory axon dynamics in vitro, and it also affects corneal sensory innervation in an in vivo model. Our results show that crocin was effective in preserving mitochondrial function and protecting corneal sensory neurons from oxidative stress. Crocin appears to be a promising candidate for the neuroprotection of corneal innervation.


Assuntos
Antioxidantes , Carotenoides , Células Receptoras Sensoriais , Animais , Ratos , Antioxidantes/farmacologia , Estresse Oxidativo , Córnea
2.
Front Nutr ; 10: 1124987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139441

RESUMO

The retinal pigment epithelium (RPE) is progressively degenerated during age-related macular degeneration (AMD), one of the leading causes of irreversible blindness, which clinical hallmark is the buildup of sub-RPE extracellular material. Clinical observations indicate that Zn dyshomeostasis can initiate detrimental intracellular events in the RPE. In this study, we used a primary human fetal RPE cell culture model producing sub-RPE deposits accumulation that recapitulates features of early AMD to study Zn homeostasis and metalloproteins changes. RPE cell derived samples were collected at 10, 21 and 59 days in culture and processed for RNA sequencing, elemental mass spectrometry and the abundance and cellular localization of specific proteins. RPE cells developed processes normal to RPE, including intercellular unions formation and expression of RPE proteins. Punctate deposition of apolipoprotein E, marker of sub-RPE material accumulation, was observed from 3 weeks with profusion after 2 months in culture. Zn cytoplasmic concentrations significantly decreased 0.2 times at 59 days, from 0.264 ± 0.119 ng·µg-1 at 10 days to 0.062 ± 0.043 ng·µg-1 at 59 days (p < 0.05). Conversely, increased levels of Cu (1.5-fold in cytoplasm, 5.0-fold in cell nuclei and membranes), Na (3.5-fold in cytoplasm, 14.0-fold in cell nuclei and membranes) and K (6.8-fold in cytoplasm) were detected after 59-days long culture. The Zn-regulating proteins metallothioneins showed significant changes in gene expression over time, with a potent down-regulation at RNA and protein level of the most abundant isoform in primary RPE cells, from 0.141 ± 0.016 ng·mL-1 at 10 days to 0.056 ± 0.023 ng·mL-1 at 59 days (0.4-fold change, p < 0.05). Zn influx and efflux transporters were also deregulated, along with an increase in oxidative stress and alterations in the expression of antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. The RPE cell model producing early accumulation of extracellular deposits provided evidences on an altered Zn homeostasis, exacerbated by changes in cytosolic Zn-binding proteins and Zn transporters, along with variations in other metals and metalloproteins, suggesting a potential role of altered Zn homeostasis during AMD development.

3.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433048

RESUMO

(1) Background: Abnormal corneal wound healing compromises visual acuity and can lead to neuropathic pain. Conventional treatments usually fail to restore the injured corneal tissue. In this study, we evaluated the effectiveness of a synthetic heparan sulfate mimetic polymer (HSmP) in a mouse model of corneal wound healing. (2) Methods: A surgical laser ablation affecting the central cornea and subbasal nerve plexus of mice was used as a model of the wound-healing assay. Topical treatment with HSmP was contrasted to its vehicle and a negative control (BSS). Corneal repair was studied using immunofluorescence to cell proliferation (Ki67), apoptosis (TUNEL assay), myofibroblast transformation (αSMA), assembly of epithelial cells (E-cadherin) and nerve regeneration (ß-tubulin III). (3) Results: At the end of the treatment, normal epithelial cytoarchitecture and corneal thickness were achieved in HSmP-treated animals. HSmP treatment reduced myofibroblast occurrence compared to eyes irrigated with vehicle (p < 0.01) or BSS (p < 0.001). The HSmP group showed 50% more intraepithelial nerves than the BSS or vehicle groups. Only HSmP-treated corneas improved the visual quality to near transparent. (4) Conclusions: These results suggest that HSmP facilitates the regeneration of the corneal epithelium and innervation, as well as restoring transparency and reducing myofibroblast scarring after laser experimental injury.

4.
Biology (Basel) ; 10(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439995

RESUMO

Glaucoma is an insidious group of eye diseases causing degeneration of the optic nerve, progressive loss of vision, and irreversible blindness. The number of people affected by glaucoma is estimated at 80 million in 2021, with 3.5% prevalence in people aged 40-80. The main biomarker and risk factor for the onset and progression of glaucoma is the elevation of intraocular pressure. However, when glaucoma is diagnosed, the level of retinal ganglion cell death usually amounts to 30-40%; hence, the urgent need for its early diagnosis. Molecular biomarkers of glaucoma, from proteins to metabolites, may be helpful as indicators of pathogenic processes observed during the disease's onset. The discovery of human glaucoma biomarkers is hampered by major limitations, including whether medications are influencing the expression of molecules in bodily fluids, or whether tests to validate glaucoma biomarker candidates should include human subjects with different types and stages of the disease, as well as patients with other ocular and neurodegenerative diseases. Moreover, the proper selection of the biofluid or tissue, as well as the analytical platform, should be mandatory. In this review, we have summarized current knowledge concerning proteomics- and metabolomics-based glaucoma biomarkers, with specificity to human eye tissue and fluid, as well the analytical approach and the main results obtained. The complex data published to date, which include at least 458 different molecules altered in human glaucoma, merit a new, integrative approach allowing for future diagnostic tests based on the absolute quantification of local and/or systemic biomarkers of glaucoma.

5.
Antioxidants (Basel) ; 10(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440661

RESUMO

The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.

6.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050198

RESUMO

PURPOSE: The purpose of this study was to examine the effect of plasma rich in growth factors (PRGFs) under blue light conditions in an in vivo model of retinal degeneration. METHODS: Male Wistar rats were exposed to dark/blue light conditions for 9 days. On day 7, right eyes were injected with saline and left eyes with PRGF. Electroretinography (ERG) and intraocular pressure (IoP) measurements were performed before and after the experiment. After sacrifice, retinal samples were collected. Hematoxylin and eosin staining was performed to analyze the structure of retinal sections. Immunofluorescence for brain-specific homeobox/POU domain protein 3A (Brn3a), choline acetyltransferase (ChAT), rhodopsin, heme oxygenase-1 (HO-1), and glial fibrillary acidic protein (GFAP) was performed to study the retinal conditions. RESULTS: Retinal signaling measured by ERG was reduced by blue light and recovered with PRGF; however, IoP measurements did not show significant differences among treatments. Blue light reduced the expression for Brn3a, ChAT, and rhodopsin. Treatment with PRGF showed a recovery in their expressions. HO-1 and GFAP results showed that blue light increased their expression but the use of PRGF reduced the effect of light. CONCLUSIONS: Blue light causes retinal degeneration. PRGF mitigated the injury, restoring the functionality of these cells and maintaining the tissue integrity.


Assuntos
Biomarcadores , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Degeneração Retiniana/sangue , Degeneração Retiniana/etiologia , Animais , Biópsia , Sobrevivência Celular , Eletrorretinografia , Imunofluorescência , Imuno-Histoquímica , Pressão Intraocular , Luz , Ratos , Degeneração Retiniana/diagnóstico , Transdução de Sinais
7.
Biomed Hub ; 5(1): 34-46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775330

RESUMO

INTRODUCTION: Nonarteritic anterior ischemic optic neuropathy (NAION), painless loss of central and/or peripheral vision, is a multifactorial disease caused by insufficient blood flow through the posterior ciliary arteries to the optic nerve head. Mutations in the methylenetetrahydrofolate reductase (MTHFR) gene, triggering hyperhomocysteinemia as a consequence of a decreased activity of the codified enzyme, have been considered to be among the risk factors of NAION. OBJECTIVE: The main aim was to study the association of the most common MTHFR genetic polymorphisms C677T and A1298C with NAION in a Spanish population. METHODS: In this case-control study, the association of the most common MTHFR polymorphisms was investigated in 94 unrelated native Spanish patients diagnosed with NAION and 204 healthy controls. Two single nucleotide polymorphisms located in the MTHFR gene, C677T (rs1801133) and A1298C (rs1801131), were analyzed by DNA sequencing and TaqMan assays. RESULTS: The allelic and genotypic frequencies of the MTHFR variants obtained in the NAION group were not significantly different when compared with the control group. A higher frequency of the C677T/A1298C genotype, codifying the nonmutated MTHFR form, was obtained in control subjects (11.27%) compared to NAION patients (4.26%), suggesting a protective effect of the wild-type protein, although this result was not conclusive considering the obtained confidence interval (CI) (95% CI: 0.13-1.06). Study of additional clinical factors including hypertension, diabetes mellitus, and dyslipidemia showed no association with a higher risk of NAION. Conversely, the clinical history of heart or cerebrovascular diseases was significantly higher in NAION patients compared to controls. Over the world, risk variants of the MTHFR gene are highly frequent, excluding African black populations, indicating a racial influence. CONCLUSIONS: The MTHFR variants did not significantly increase the risk of suffering from NAION. However, considering that individuals with at least one of the risk variants have the MTHFR enzyme with decreased activity, it cannot be ruled out that these mutations are relevant for the development of NAION in a subgroup of the population with other specific characteristics. These may include high plasma levels of homocysteine along with nutritional deficiencies including low folate or vitamin B12 and the combination of systemic and local risk factors.

8.
Diagnostics (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585848

RESUMO

Animal models of glaucoma, a neurodegenerative disease affecting the retina, offer the opportunity to study candidate molecular biomarkers throughout the disease. In this work, the DBA/2J glaucomatous mouse has been used to study the systemic levels of several proteins previously identified as potential biomarkers of glaucoma, along the pre- to post-glaucomatous transition. Serum samples obtained from glaucomatous and control mice at 4, 10, and 14 months, were classified into different experimental groups according to the optic nerve damage at 14 months old. Quantifications of ten serum proteins were carried out by enzyme immunoassays. Changes in the levels of some of these proteins in the transition to glaucomatous stages were identified, highlighting the significative decrease in the concentration of complement C4a protein. Moreover, the five-protein panel consisting of complement C4a, complement factor H, ficolin-3, apolipoprotein A4, and transthyretin predicted the transition to glaucoma in 78% of cases, and to the advanced disease in 89%. Our data, although still preliminary, suggest that disease development in DBA/2J mice is associated with important molecular changes in immune response and complement system proteins and demonstrate the utility of this model in identifying, at systemic level, potential markers for the diagnosis of glaucoma.

9.
Acta Ophthalmol ; 98(3): e282-e291, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31654486

RESUMO

PURPOSE: To elucidate the potential role of eleven single nucleotide polymorphisms (SNPs) in the most relevant lipid metabolism genes in Northern Spanish patients with age-related macular degeneration (AMD). METHODS: A case-control study of 228 unrelated native Northern Spanish patients diagnosed with AMD (73 dry and 155 wet) and 95 healthy controls was performed. DNA was isolated from peripheral blood and genotyped for the SNPs APOE rs429358 and rs7412; CTEP rs3764261; LIPC rs10468017 and rs493258; LPL rs12678919; ABCA1 rs1883025; ABCA4 rs76157638, rs3112831 and rs1800555; and SCARB1 rs5888, using TaqMan probes. An additional association study of ε2, ε3 and ε4 major isoforms of APOE gene with AMD has been carried out. RESULTS: The allele and genotype frequencies for each of the eleven sequence variants in the lipid metabolism genes did not show significant differences when comparing AMD cases and controls. Statistical analysis revealed that APOE-ε2 carrier genotypes were less frequently observed in patients with wet AMD compared to controls (5.8% versus 13.7%, respectively: p = 3.28 × 10-2 ; OR = 0.42, 95% CI: 0.19-0.95). The frequency of the allele T of rs10468017 (LIPC gene) was lower in dry AMD cases compared to controls (15.8 versus 27.9%, respectively: p = 8.4 × 10-3 OR = 0.57, 95% CI: 0.33-0.98). CONCLUSIONS: Our results suggest a protective role for APOE-ε2 allele to wet AMD in the Northern Spanish population.


Assuntos
Apolipoproteína E2/metabolismo , Degeneração Macular Exsudativa/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Lipase/metabolismo , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Espanha , Degeneração Macular Exsudativa/metabolismo
10.
Ophthalmic Genet ; 40(4): 342-349, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31418317

RESUMO

Background: To study the association of the most common methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms C677T and A1298C with retinal vein occlusion (RVO) in a Spanish population. Methods: Case-control study involving 359 subjects, 183 unrelated native Spanish patients diagnosed with RVO, distributed in central or branch RVO, and 176 healthy controls. Two SNPs located in the gene MTHFR, C677T (rs1801133) and A1298C (rs1801131) were analyzed by DNA sequencing and TaqMan assays. Results: A high prevalence of the MTHFR variants T and C of the SNP C677T and A1298C, respectively, was observed in our population. Specifically, 88.07% of controls and 85.25% of RVO patients have at least one of these variants. However, the prevalence of these variants was not significantly different when comparing RVO patients and controls. The variant T of C677T was identified in 60.65% of RVO patients and 59.10% of control subjects, while the variant C of A1298C was present in 46.45% of RVO patients and 51.14% of controls. No association of dyslipidemia, diabetes mellitus, glaucoma, thyroid disease and renal disease with RVO was observed, while hypertension was significantly higher in the RVO patients (p < .0001). Conclusions: The MTHFR variants, T of C677T and C of A1298C, did not significantly increase the risk of suffering RVO in a Spanish population and therefore additional risk factors are contributing to the onset of the disease.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Oclusão da Veia Retiniana/genética , Oclusão da Veia Retiniana/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Oclusão da Veia Retiniana/epidemiologia , Fatores de Risco , Espanha/epidemiologia , Adulto Jovem
11.
Invest Ophthalmol Vis Sci ; 59(6): 2281-2292, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847633

RESUMO

Purpose: To define the characteristics and time course of the morphologic and functional changes experienced by corneal sensory nerves after photorefractive keratectomy (PRK). Methods: Unilateral corneal excimer laser photoablation was performed in 54 anesthetized 3- to 6-month-old mice; 11 naïve animals served as control. Mice were killed 0, 3, 7, 15, and 30 days after PRK. Excised eyes were placed in a recording chamber superfused at 34°C. Electrical nerve impulse activity of single sensory terminals was recorded with a micropipette applied onto the corneal surface. Spontaneous and stimulus-evoked (cold, heat, mechanical, and chemical stimuli) nerve terminal impulse (NTI) activity was analyzed. Corneas were fixed and stained with anti-ß-Tubulin III antibody to measure nerve density and number of epithelial nerve penetration points of regenerating subbasal leashes. Results: Nerve fibers and NTI activity were absent in the injured area between 0 and 7 days after PRK, when sparse regenerating nerve sprouts appear. On day 15, subbasal nerve density reached half the control value and abnormally responding cold-sensitive terminals were recorded inside the lesion. Thirty days after PRK, nerve density was almost restored, active cold thermoreceptors were abundant, and polymodal nociceptor activity first reappeared. Conclusions: Morphologic regeneration of subbasal corneal nerves started shortly after PRK ablation and was substantially completed 30 days later. Functional recovery appears faster in cold terminals than polymodal terminals, possibly reflecting an incomplete damage of the more extensively branched cold-sensitive axon terminals. Evolution of postsurgical discomfort sensations quality may be associated with the variable regeneration pattern of each fiber type.


Assuntos
Córnea/inervação , Regeneração Nervosa , Ceratectomia Fotorrefrativa/métodos , Termorreceptores/fisiopatologia , Animais , Córnea/cirurgia , Modelos Animais de Doenças , Imuno-Histoquímica , Lasers de Excimer/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fibras Nervosas/patologia , Nociceptores/patologia , Período Pós-Operatório , Termorreceptores/patologia
12.
J Comp Neurol ; 526(11): 1859-1874, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664111

RESUMO

Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8+ corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8+ corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people.


Assuntos
Envelhecimento/fisiologia , Neurônios/metabolismo , Canais de Cátion TRPM/biossíntese , Lágrimas/fisiologia , Termorreceptores/fisiologia , Animais , Córnea/inervação , Crioterapia , Síndromes do Olho Seco/fisiopatologia , Masculino , Camundongos , Terminações Nervosas/fisiologia , Concentração Osmolar , Canais de Cátion TRPM/genética , Lágrimas/química , Gânglio Trigeminal/crescimento & desenvolvimento , Gânglio Trigeminal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...