Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 195(3): 677-687, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33611626

RESUMO

An altitudinal gradient of leaf water repellency is often observed between and within species. In a previous study of Arabidopsis halleri, cauline leaves (stem leaves that wrap flowering buds) showed higher water repellency in exposed semi-alpine plants than in understory low-elevation plants. Here, we examined altitudinal variations in the cuticular wax content of the leaf surface and experimentally evaluated the role of high water repellency of cauline leaves. Leaf cuticular wax was analysed using comprehensive two-dimensional gas chromatography (GC)-mass spectrometry and a GC-flame ionisation detector. Young flowering buds wrapped by cauline leaves were exposed to freezing temperatures with or without water, and frost damage to the flowering buds was compared between plants from semi-alpine and low-elevation habitats. Higher amounts of C29, C31, and C33 alkanes were observed in the cauline leaves of semi-alpine plants than in those of low-elevation plants. In the freezing experiment, water application increased damage to the flowering buds of low-elevation plants, and the extent of damage to the flowering buds was lower in semi-alpine plants than in low-elevation plants when water was applied to the plant surface. Genetic variations in the amounts of alkanes on the leaf surface depending on the altitude occurred specifically in cauline leaves. Our results indicate that the water repellency of cauline leaves presumably minimises frost damage to flowering buds at high altitudes.


Assuntos
Arabidopsis , Altitude , Congelamento , Folhas de Planta , Água
2.
Ann Bot ; 121(7): 1351-1360, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29579149

RESUMO

Background and Aims: An altitudinal gradient of leaf wettability is often observed between and within species. To understand its functional significance, positional variation of leaf surfaces within plants should be taken into account. In rosette-forming plants, rosette leaves are near the ground and their adaxial surfaces are exposed, whereas cauline leaves are lifted from the ground throughout the reproductive season, and their abaxial surfaces are more exposed. Here, we investigated leaf wettability of cauline and rosette leaves of Arabidopsis halleri subsp. gemmifera growing in contrasting montane habitats along an altitudinal gradient at Mt Ibuki, Japan. Methods: We conducted field investigations and a growth chamber experiment to determine whether field-observed variation in leaf wettability was caused by genetic differentiation. We further performed gene expression analysis of a wax-related gene, i.e. AhgCER1, a homologue of A. thaliana ECERIFERUM1 (CER1) that may be involved in differentiation of leaf wettability. Key Results: We found cauline-leaf specific genetic differentiation in leaf wettability between contrasting montane habitats. Cauline leaves of semi-alpine plants, especially on abaxial surfaces, were non-wettable. Cauline leaves of low-altitudinal understorey plants were wettable, and rosette leaves were also wettable in both habitats. AhgCER1 expression corresponded to observed leaf wettability patterns. Conclusions: Low wettability of cauline leaves is hypothesized to keep exposed surfaces dry when they are wrapping flowering buds in early spring, and presumably protects flowering buds from frost damage. The genetic system that controls wax content, specifically for cauline leaves, should be involved in the observed genetic differentiation, and AhgCER1 control is a strong candidate for the underlying genetic mechanism.


Assuntos
Arabidopsis/genética , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética , Altitude , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Ecossistema , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transcriptoma , Tricomas/anatomia & histologia , Tricomas/fisiologia , Água/metabolismo
3.
Oecologia ; 162(1): 1-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19727830

RESUMO

The duration and amount of water captured on leaves and its functional significance is highly varied. Leaf surface wettability influences water absorption, gas exchange, pathogen infection, nutrient leaching, contamination by pollutants, self-cleaning properties and in freezing environments the probability of extrinsic ice nucleation. To test the impact of environment on the development of leaf wettability, this functional trait was measured in 227 dominant plant species along an extreme altitudinal environment gradient (186-5,268 m) on the wet and dry slopes of the Nepalese Himalayas. Plants from the understorey and open places in woodlands were also compared. Leaf wettability was assessed by droplet contact angle (theta), retention and leaf inclination measurement. With increasing altitude leaf wettability decreased significantly parallel to the observed atmospheric temperature decrease (0.5 K/100 m). Leaves from non-freezing tropical and subtropical origins were highly wettable (theta < 90 degrees). Temperate leaves were non-wettable (110 degrees < theta < 130 degrees). Subalpine and alpine leaves were highly non-wettable (130 degrees < theta < 150 degrees) and adaxial pubescence occurred more frequently. Leaves taken from the understorey were more wettable but had a better droplet run off than leaves sampled in open places. In the semi-arid northern slopes (temperate to alpine) of the Himalayas leaf wettability was decreased in comparison to the southern humid side. The majority of the leaves had a low droplet retention <20 degrees ; higher values were linked to high non-wettability (theta > 130 degrees) which was more often observed at high altitude. Good droplet run off at +/-10 degrees inclination was found in highly wettable leaves (theta < 90 degrees) of tropical and subtropical origin and on leaves from the forest understorey. Structural properties for low wettability are developed in cold and dry environments and open sites with frequent dew formation as it appears to be an important functional trait to prevent a number of the negative effects adhering surface water may have.


Assuntos
Geografia , Folhas de Planta/fisiologia , Água , Meio Ambiente , Folhas de Planta/metabolismo , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...