Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Biophys J ; 53(1-2): 57-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172352

RESUMO

The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer's elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.


Assuntos
HIV-1 , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/química , Microscopia de Força Atômica/métodos , Fosfatidilcolinas/química , Análise Espectral , Peptídeos , Colesterol
2.
Biochim Biophys Acta Biomembr ; 1864(7): 183907, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247332

RESUMO

Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Similarly, H0-Endo caused a larger change in the bilayer polarity than H0-Amph (30% versus 12% at P/L = 1/20). At P/L = 1/50, the chain orientational order was decreased by 26% and 66% by H0-Amph and H0-Endo, respectively. The different capabilities were explained by considering hydrophobicity score distributions. We employed atomic force microscopy to investigate membrane structural changes. Both peptides caused the formation of micron-sized holes. Interestingly, only H0-Amph induced membrane fusion as evidenced by the formation of high-rise regions. Lastly, experiments of giant unilamellar vesicles showed that H0-Amph and H0-Endo generated thin tubules and miniscule vesicles, respectively. Together, our studies showed that both helices are effective in altering membrane properties; the observed changes might be important for membrane curvature induction. Importantly, comparisons between the two peptides revealed that the degree of membrane remodeling is dependent on the sequence of the N-terminal helix of the N-BAR protein family.


Assuntos
Proteínas do Tecido Nervoso , Peptídeos , Membrana Celular/metabolismo , Lipídeos/análise , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1862(10): 183397, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533976

RESUMO

The amphipathic helix 0 of endophilin (i.e., H0-Endo) is important to membrane binding, but its function of curvature generation remains controversial. We used electron paramagnetic resonance (EPR) spectroscopy to study effects of H0-Endo on membrane material properties. We found that H0-Endo reduced lipid chain mobility and increased bilayer polarity, i.e., making the bilayer interior more polar. Lipid-dependent examination revealed that anionic lipids augmented the effect of H0-Endo, while cholesterol had a minimal impact. Our EPR spectroscopy of magnetically aligned bicelles showed that as the peptide-to-lipid ratio increased, the lipid chain orientational order decreased gradually, followed by a sudden loss. We discuss an interfacial-bound model of the amphipathic H0-Endo to account for all EPR data. We used atomic force microscopy and fluorescence microscopy to explore membrane morphological changes. We found that H0-Endo caused the formation of micron-sized holes in mica-supported planar bilayers. Hole formation is likely caused by two competing forces - the adhesion force exerted by the substrate represses bilayer budging, whereas the line tension originating from peptide clustering has a tendency of destabilizing bilayer organization. In the absence of substrate influences, membrane curvature induction was manifested by generating small vesicles surrounding giant unilamellar vesicles. Our results of membrane perforation and vesiculation suggest that the functionality of H0-Endo is more than just coordinating membrane binding of endophilin.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/química
4.
ACS Omega ; 3(8): 9586-9597, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30198000

RESUMO

Modulations of synaptic membranes play an essential role in the physiological and pathological functions of the presynaptic protein α-synuclein (αSyn). Here we used solution atomic force microscopy (AFM) and electron paramagnetic resonance (EPR) spectroscopy to investigate membrane modulations caused by αSyn. We used several lipid bilayers to explore how different lipid species may regulate αSyn-membrane interactions. We found that at a protein-to-lipid ratio of ∼1/9, αSyn perturbed lipid bilayers by generating semi-transmembrane defects that only span one leaflet. In addition, αSyn coaggregates with lipid molecules to produce ∼10 nm-sized lipoprotein nanoparticles. The obtained AFM data are consistent with the apolipoprotein characteristic of αSyn. The role of anionic lipids was elucidated by comparing results from zwitterionic and anionic lipid bilayers. Specifically, our AFM measurements showed that anionic bilayers had a larger tendency of forming bilayer defects; similarly, our EPR measurements revealed that anionic bilayers exhibited more substantial changes in lipid chain mobility and bilayer polarity. We also studied the effect of cholesterol. We found that cholesterol increased the capability of αSyn in inducing bilayer defects and altering lipid chain mobility and bilayer polarity. These data can be explained by an increase in the lipid headgroup-headgroup spacing and/or specific cholesterol-αSyn interactions. Interestingly, we found an inhibitory effect of the cone-shaped phosphatidylethanolamine lipids on αSyn-induced bilayer remodeling. We explained our data by considering interlipid hydrogen-bonding that can stabilize bilayer organization and suppress lipid extraction. Our results of lipid-dependent membrane modulations are likely relevant to αSyn functioning.

5.
ACS Omega ; 3(12): 17828-17834, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30613815

RESUMO

Polyanionic lipopolysaccharides (LPS) play an important role in regulating the permeability of the outer membrane (OM) of Gram-negative bacteria. Impairment of the LPS-enriched OM is essential in initiating the bactericidal activity of polymyxins. We are interested in how colistin (polymyxin E) affects the membrane permeability of LPS/phospholipid bilayers. Our vesicle leakage experiment showed that colistin binding enhanced bilayer permeability; the maximum increase in the bilayer permeability was positively correlated with the LPS fraction. Addition of magnesium ions abolished the effect of LPS in enhancing bilayer permeabilization. To describe the vesicle leakage behavior from a structural perspective, we performed liquid atomic force microscopy (AFM) measurements on planar lipid bilayers. We found that colistin caused the formation of nano- and macroclusters that protruded from the bilayer by ∼2 nm. Moreover, cluster development was promoted by increasing the fraction of LPS or colistin concentration but inhibited by magnesium ions. To explain our experimental data, we proposed a lipid clustering model where colistin binds to LPS to form large-scale complexes segregated from zwitterionic phospholipids. The discontinuity (and thickness mismatch) at the edge of LPS-colistin clusters will create a passage that allows solutes to permeate through. The proposed model is consistent with all data obtained from our leakage and AFM experiments. Our results of LPS-dependent membrane restructuring provided useful insights into the mechanism that could be used by polymyxins in impairing the permeability barrier of the OM of Gram-negative bacteria.

6.
J Phys Chem B ; 121(19): 5058-5071, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28459565

RESUMO

A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.


Assuntos
Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Príons/química , Príons/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA