Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(43): 10153-10161, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36278936

RESUMO

Quantum dot (QD) assemblies are nanostructured networks made from aggregates of QDs and feature improved charge and energy transfer efficiencies compared to discrete QDs. Using first-principles many-body perturbation theory, we systematically compare the electronic and optical properties of two types of CdS QD assemblies that have been experimentally investigated: (i) QD gels, where individual QDs are covalently connected via di- or polysulfide bonds, and (ii) QD nanocrystals, where individual QDs are bound via van der Waals interactions. Our work illustrates how the electronic and optical properties evolve when discrete QDs are assembled into 1D, 2D, and 3D gels and nanocrystals, as well as how the one-body and many-body interactions in these systems impact the trends as the dimensionality of the assembly increases. Furthermore, our work reveals the crucial role of the di- or polysulfide covalent bonds in the localization of the excitons, which highlights the difference between QD gels and QD nanocrystals.


Assuntos
Nanopartículas , Pontos Quânticos , Pontos Quânticos/química , Sulfetos/química , Nanopartículas/química , Transferência de Energia
2.
Nano Lett ; 21(18): 7548-7554, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499516

RESUMO

Twisted bilayer graphene exhibits many intriguing behaviors ranging from superconductivity to the anomalous Hall effect to ferromagnetism at a magic angle of ∼1°. Here, using a first-principles approach, we reveal ferromagnetism in a twisted bilayer graphene nanoflex. Our results demonstrate that when the energy gap of a twisted nanoflex approaches zero, electronic instability occurs and a ferromagnetic gap state emerges spontaneously to lower the energy. Unlike the observed ferromagnetism at a magic angle in the graphene bilayer, we notice the ferromagnetic phase appearing aperiodically between 0 and 30° in the twisted nanoflex. The origin of electronic instability at various twist angles is ascribed to the several higher-symmetry phases that are broken to lower the energy resulting from an aperiodic modulation of the interlayer interaction in the nanoflex. Besides unraveling a spin-pairing mechanism for the reappearance of the nonmagnetic phase, we have found orbitals at the boundary of nanoflex contributing to ferromagnetism.

3.
Nano Lett ; 21(4): 1856-1862, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577344

RESUMO

An antiferromagnet offers many important functionalities such as opportunities for electrical control of magnetic domains, immunity from magnetic perturbations, and fast spin dynamics. Introducing some of these intriguing features of an antiferromagnet into a low dimensional semiconductor core-shell nanowire offers an exciting pathway for its usage in antiferromagnetic semiconductor spintronics. Here, using a quantum mechanical approach, we predict that the Cr-doped Ge-core/Si-shell nanowire behaves as an antiferromagnetic semiconductor. The origin of antiferromagnetic spin alignments between Cr is attributed to the superexchange interaction mediated by the pz orbitals of the Ge atoms that are bonded to Cr. A weak spin-orbit interaction was found in this material, suggesting a longer spin coherence length. The spin-dependent quantum transport calculations in the Cr-doped nanowire junction reveals a switching feature with a high ON/OFF current ratio (∼41 times higher for the ON state at a relatively small bias of 0.83 V).

4.
Nanoscale Adv ; 2(5): 1843-1849, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132517

RESUMO

Incorporating spin functionality into a semiconductor core-shell nanowire that offers immunity from the substrate effect is a highly desirable step for its application in next generation spintronics. Here, using first-principles density functional theory that does not make any assumptions of the electronic structure, we predict that a very small amount of Mn dopants in the core region of the wire can transform the Ge-Si core-shell semiconductor nanowire into a half-metallic ferromagnet that is stable at room temperature. The energy band structures reveal a semiconducting behavior for one spin direction while the metallic behavior for the other, indicating 100% spin polarization at the Fermi energy. No measurable shifts in energy levels in the vicinity of Fermi energy are found due to spin-orbit coupling, which suggests that the spin coherence length can be much higher in this material. To further assess the use of this material in a practical device setting, we have used a quantum transport approach to calculate the spin-filtering efficiency for a channel made out of a finite nanowire segment. Our calculations yield an efficiency more than 90%, which further confirms the excellent spin-selective properties of our newly tailored Mn-doped Ge-core/Si-shell nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...