Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22048, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333571

RESUMO

Nanoparticle-mediated drug delivery offers a promising approach to targeted cancer therapy, leveraging the ability of nanoparticles to deliver therapeutic agents directly to cancerous tissues with minimal impact on surrounding healthy cells. The presence of these nanoparticles is governed by a concentration equation, which accounts for the diffusion, convection, and reaction of the nanoparticles with the blood components. It is well-known that whenever a disease or infection occurs in a human, in 80% of cases a rise in the concentration of hydrogen peroxide in the blood occurs. This is the reason why blood is assumed to contain hydrogen peroxide (in the present study), which is a biomarker of oxidative stress and inflammation. This study explores the integration of machine learning (ML) techniques into the optimization of drug delivery processes within the human cardiovascular system, focusing on the enhancement of these processes through the application of magnetic fields. By employing ML algorithms, we analyze and predict the behavior of nanoparticles as they navigate the complex fluid dynamics of the cardiovascular system, particularly under the influence of an external magnetic field. The predictive power of ML models enables the precise control of nanoparticle trajectories, optimizing their accumulation in cancerous tissues and improving the efficacy of the drug delivery system. The findings of this study demonstrate that ML-enhanced magnetic targeting can significantly enhance the precision and effectiveness of nanoparticle-mediated drug delivery, offering a new paradigm in cancer treatment strategies. This approach has the potential to revolutionize the field by providing personalized and highly efficient therapeutic solutions for cancer patients.


Assuntos
Sistemas de Liberação de Medicamentos , Aprendizado de Máquina , Campos Magnéticos , Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistemas de Liberação de Fármacos por Nanopartículas , Peróxido de Hidrogênio/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética
2.
Sci Rep ; 13(1): 21140, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036570

RESUMO

Hybrid nanofluids offer higher stability, synergistic effects, and better heat transfer compared to simple nanofluids. Their higher thermal conductivity, lower viscosity, and interaction with magnetic fields make them ideal for various applications, including materials science, transportation, medical technology, energy, and fundamental physics. The governing partial differential equations are numerically solved by employing a finite volume approach, and the effects of various parameters on the nanofluid flow and thermal characteristics are systematically examined from the simulations based on a self-developed MATLAB code. The parameters included magnetic field strength, the Reynolds number, the nanoparticle volume fraction, and the number and position of the strips in which the magnetic field is localized. It has been noted that the magnetized field induces the spinning of the tri-hybrid nanoparticles, which generates the intricate structure of vortices in the flow. The local skin friction (CfRe) and the Nusselt number (Nu) increase significantly when the magnetic field is intensified. Moreover, adding more nanoparticles in the flow enhances both Nu and CfRe, but with different effects for different nanoparticles. Silver (Ag) shows the highest increase in both Nu (52%) and CfRe (110%), indicating strong thermal-fluid coupling. Alumina (Al2O3) and Titanium Dioxide (TiO2) show lower increases in both Nu (43% and 34%) and CfRe (14% and 10%), indicating weaker coupling in the flow. Finally, compared with the localized one, the uniform magnetic field has a minor effect on the flow and temperature distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA