Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Environ Au ; 3(6): 348-360, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38028744

RESUMO

It is well known that atmospheric aerosol size and composition impact air quality, climate, and health. The aerosol composition is typically a mixture and consists of a wide range of organic and inorganic particles that interact with each other. Furthermore, water vapor is ubiquitous in the atmosphere, in indoor air, and within the human body's respiratory system, and the presence of water can alter the aerosol morphology and propensity to form droplets. Specifically, aerosol mixtures can undergo liquid-liquid phase separation (LLPS) in the presence of water vapor. However, the experimental conditions for which LLPS impacts water uptake and the subsequent prediction of aerosol mixtures are poorly understood. To improve our understanding of aerosol mixtures and droplets, this study explores two ternary systems that undergo LLPS, namely, the 2MGA system (sucrose + ammonium sulfate + 2-methylglutaric acid) and the PEG1000 system (sucrose + ammonium sulfate + polyethylene glycol 1000). In this study, the ratio of species and the O:C ratios are systematically changed, and the hygroscopic properties of the resultant aerosol were investigated. Here, we show that the droplet activation above 100% RH of the 2MGA system was influenced by LLPS, while the droplet activation of the PEG1000 system was observed to be linearly additive regardless of chemical composition, O:C ratio, and LLPS. A theoretical model that accounts for LLPS with O:C ratios was developed and predicts the water uptake of internally mixed systems of different compositions and phase states. Hence, this study provides a computationally efficient algorithm to account for the LLPS and solubility parameterized by the O:C ratio for droplet activation at supersaturated relative humidity conditions and may thus be extended to mixed inorganic-organic aerosol populations with unspeciated organic composition found in the ambient environment.

2.
J Phys Chem A ; 127(17): 3873-3882, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079462

RESUMO

Black carbon (BC) is an aerosol that is released into the atmosphere due to the incomplete burning of biomass and can affect the climate directly or indirectly. BC commonly mixes with other primary or secondary aerosols to undergo aging, thereby changing its radiative properties and cloud condensation nuclei (CCN) activity. The composition of aged BC species in the atmosphere is difficult to measure with high confidence, so their associated CCN activity can be uncertain. In this work, the CCN activity analysis of BC was performed using laboratory measurements of proxy aged BC species. Vulcan XC72R carbon black was used as the representative of BC, and three structural isomers of benzenedicarboxylic acid─phthalic acid (PTA), isophthalic acid (IPTA), and terephthalic acid (TPTA)─were mixed with BC to generate three different proxies of aged BC species. Most studies related to CCN activity analysis of BC aerosols use the traditional Köhler theory or an adsorption theory (such as the Frenkel-Halsey-Hill adsorption theory). PTA, IPTA, and TPTA fall in the sparingly water-soluble range and therefore do not fully obey either of the aforementioned theories. Consequently, a novel hybrid activity model (HAM) was used for the CCN activity analysis of the BC mixtures studied in this work. HAM combines the features of adsorption theory via the adsorption isotherm with the features of Köhler theory by incorporating solubility partitioning. The results in this work showed that HAM improves the representation of CCN activity of pure and mixed BC aerosol species with high certainty, evident from generally better goodness of fit, R2 > 0.9. This work implies that the hygroscopicity parameterization based on HAM captures the size-dependent variability in the CCN activity of the pure and aged BC species.

3.
J Phys Chem A ; 127(11): 2545-2553, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36913529

RESUMO

Understanding the nanoscale water condensation dynamics in strong electric fields is important for improving the atmospheric modeling of cloud dynamics and emerging technologies utilizing electric fields for direct air moisture capture. Here, we use vapor-phase transmission electron microscopy (VPTEM) to directly image nanoscale condensation dynamics of sessile water droplets in electric fields. VPTEM imaging of saturated water vapor stimulated condensation of sessile water nanodroplets that grew to a size of ∼500 nm before evaporating over a time scale of a minute. Simulations showed that electron beam charging of the silicon nitride microfluidic channel windows generated electric fields of ∼108 V/m, which depressed the water vapor pressure and effected rapid nucleation of nanosized liquid water droplets. A mass balance model showed that droplet growth was consistent with electric field-induced condensation, while droplet evaporation was consistent with radiolysis-induced evaporation via conversion of water to hydrogen gas. The model quantified several electron beam-sample interactions and vapor transport properties, showed that electron beam heating was insignificant, and demonstrated that literature values significantly underestimated radiolytic hydrogen production and overestimated water vapor diffusivity. This work demonstrates a method for investigating water condensation in strong electric fields and under supersaturated conditions, which is relevant to vapor-liquid equilibrium in the troposphere. While this work identifies several electron beam-sample interactions that impact condensation dynamics, quantification of these phenomena here is expected to enable delineating these artifacts from the physics of interest and accounting for them when imaging more complex vapor-liquid equilibrium phenomena with VPTEM.

4.
Environ Sci Process Impacts ; 25(2): 229-240, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35815759

RESUMO

Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o-aminophenol (oAP) and p-aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter (κCCN) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor (Gf) range, at RH = 85%, for oAP was 1.60-0.74 and for pAP was 1.53-0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere.


Assuntos
Carbono , Nitrogênio , Molhabilidade , Compostos Orgânicos/química , Água/química , Aerossóis/química
5.
ACS Omega ; 7(28): 24202-24207, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874264

RESUMO

Uric acid particles are formed due to hyperuricemia, and previous works have focused on understanding the surface forces, crystallization, and growth of micron- and supermicron-sized particles. However, little to no work has furthered our understanding about uric acid nanonuclei that precipitate during the initial stages of kidney stone formation. In this work, we generate nanosized uric acid particles by evaporating saturated solution droplets of uric acid. Furthermore, we quantify the effects of drying rate on the morphology of uric acid nanonuclei. An aerosol droplet drying method generates uric acid nanoparticles in the size range of 20-200 nm from aqueous droplets (1-6 µm). Results show that uric acid nanonuclei are non-spherical with a shape factor value in the range of 1.1-1.4. The shape factor values change with drying rate and indicate that the nanoparticle morphology is greatly affected by drying kinetics. The nanonuclei are amorphous but can grow to form crystalline micron-sized particles. Indeed, a pre-crystallization phase was observed for heterogeneous nucleation of uric acid particles in the size range of a few hundred nanometers. Our findings show that the morphology of uric acid nanonuclei is significantly different from that of crystalline supermicron-sized particles. These new findings imply that the dissolution characteristics, surface properties, elimination, and medical treatment of uric acid nanonuclei formed during the initial stages of nucleation must be reconsidered.

6.
Sci Total Environ ; 830: 154767, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346709

RESUMO

Hydroxyalkylsulfonates may contribute significantly to atmospheric particles; however, their hygroscopic properties and cloud condensation nuclei (CCN) activities remain unknown. In this study, three complementary techniques were utilized to examine the hygroscopicity of sodium hydroxymethanesulfonate (NaHMS), sodium 2-hydroxyethylsulfonate (NaHES), and ammonium 2-hydroxyethylsulfonate (NH4HES) under subsaturated and supersaturated environments. The mass changes in the three hydroxyalkylsulfonates at different relative humidities at 25 °C were examined by a vapor sorption analyzer, and the mass growth factors were measured to be 3.25 ± 0.01 for NaHMS, 3.32 ± 0.02 for NaHES, and 3.34 ± 0.04 for NH4HES at 90% RH. Their hygroscopic growth was investigated by a humidity tandem differential mobility analyzer, and hygroscopic growth factors were 1.78 ± 0.02 for NaHMS, 1.71 ± 0.02 for NaHES, and 1.68 ± 0.03 for NH4HES at 90% RH. Furthermore, the CCN activities of NaHMS, NaHES, and NH4HES were explored, and their single hygroscopicity parameters (κccn) were measured to be 0.649 ± 0.097 for NaHMS, 0.559 ± 0.069 for NaHES, and 0.434 ± 0.073 for NH4HES. In addition, the hygroscopic growth and CCN activities of binary mixtures of ammonium sulfate with one of the three hydroxyalkylsulfonates were also examined.


Assuntos
Alcanossulfonatos/química , Gases , Aerossóis , Sulfato de Amônio , Umidade , Molhabilidade
7.
Commun Chem ; 5(1): 112, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36697654

RESUMO

Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.

8.
Sci Total Environ ; 737: 140333, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783873

RESUMO

While the effects of fuel composition on primary vehicle emissions have been well studied, less is known about the effects on secondary aerosol formation and composition. The propensity of light-duty gasoline engines to form secondary aerosol and contribute to regional air quality burdens are of scientific interest. This study assessed secondary aerosol formation and composition due to photochemical aging of exhaust emissions from a light-duty vehicle equipped with gasoline direct injection (GDI) engine. The vehicle was operated on eight fuels with varying ethanol and aromatic levels. Testing was performed over the LA92 cycle using a chassis dynamometer. The aging studies were performed using a mobile environmental chamber. Diluted exhaust emissions were introduced to the mobile chamber over the course of the LA92 cycle and subsequently photochemically reacted. It was found that secondary aerosol mass exceeded the primary particulate matter (PM) emissions. Secondary aerosol was primarily composed of ammonium nitrate due to the elevated tailpipe ammonia emissions. The high aromatic fuels produced greater total carbonaceous aerosol and secondary organic aerosol (SOA) compared to the low aromatic fuels. A clear influence of ethanol for the high aromatic fuels on SOA formation was observed, with greater SOA formation for the fuels with higher ethanol contents. Our results suggest that more SOA formation is expected from current GDI vehicles when operated with gasoline fuels rich with heavier aromatics and blended with higher ethanol levels.

9.
Sci Total Environ ; 683: 749-761, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31150895

RESUMO

This study assessed the gaseous and particulate emissions, as well as the toxicological properties of particulate matter (PM) from a flex fuel vehicle equipped with a wall-guided gasoline direct injection engine over triplicates cold-start and hot-start LA92 cycles. The vehicle was operated on a Tier 3 E10 fuel, an E10 fuel with higher levels of aromatics than the Tier 3 E10, an E30, and an E78 blend. Total hydrocarbon (THC), non-methane hydrocarbon (NMHC), carbon monoxide (CO), particulate emissions, and gaseous toxics (of benzene, toluene, ethylbenzene, xylenes (BTEX), and 1,3-butadiene) reduced for E30 and E78 blends compared to both E10 fuels. Formaldehyde and acetaldehyde emissions substantially increased with the higher ethanol blends. The high aromatic E10 fuel increased the emissions of THC, NMHC, particulates, and BTEX compared to the Tier 3 E10 fuel and the higher ethanol blends, as well as showed higher concentrations of accumulation mode particles. The GDI PM did not exhibit any measurable mutagenicity at the PM concentrations tested. Cytotoxicity varied only within a small range and concentrations of PM, eliciting a cytotoxic response similar to those by ambient aerosol. The outcomes of our two measures of PM oxidative potential (macrophage ROS and DTT) were significantly correlated, with the E78 blend exhibiting the least oxidative potential and the E30 the greatest. Gene expression analysis at both the mRNA and protein level indicates that there is the potential for GDI PM emissions to contribute to inflammation and etiology of disease such as asthma, and in contrast to the ROS and DTT outcomes, the E78 fuel PM exhibited the greatest potential to elicit pro-inflammatory cytokine (TNFα) production. Overall, the trends in toxicity emission rates (activity/mi) across the ethanol blends was driven primarily by PM mass emission rate contrasts and only secondarily by the differences in intrinsic toxicity of the PM.


Assuntos
Poluentes Atmosféricos/análise , Etanol/análise , Emissões de Veículos/análise , Gasolina/análise
10.
Environ Sci Technol ; 53(6): 3037-3047, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30794395

RESUMO

The effects of photochemical aging on exhaust emissions from two light-duty vehicles with gasoline direct injection (GDI) engines equipped with and without catalyzed gasoline particle filters (GPFs) were investigated using a mobile environmental chamber. Both vehicles with and without the GPFs were exercised over the LA92 drive cycle using a chassis dynamometer. Diluted exhaust emissions from the entire LA92 cycle were introduced to the mobile chamber and subsequently photochemically reacted. It was found that the addition of catalyzed GPFs will significantly reduce tailpipe particulate emissions and also provide benefits in gaseous emissions, including nonmethane hydrocarbons (NMHC). Tailpipe emissions composition showed important changes with the use of GPFs by practically eliminating black carbon and increasing the fractional contribution of organic mass. Production of secondary organic aerosol (SOA) was reduced with GPF addition, but was also dependent on engine design which determined the amount of SOA precursors at the tailpipe. Our findings indicate that SOA production from GDI vehicles will be reduced with the application of catalyzed GPFs through the mitigation of reactive hydrocarbon precursors.


Assuntos
Gasolina , Emissões de Veículos , Aerossóis , Catálise , Veículos Automotores , Fuligem
11.
Sci Total Environ ; 650(Pt 1): 1182-1194, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308806

RESUMO

We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.


Assuntos
Poluentes Atmosféricos/análise , Veículos Automotores/estatística & dados numéricos , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Gasolina/análise , Material Particulado/química , Material Particulado/toxicidade
12.
Environ Sci Technol ; 52(5): 3275-3284, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446927

RESUMO

We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO2) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , California , Gasolina , Material Particulado , Emissões de Veículos
13.
Environ Sci Technol ; 51(3): 1580-1586, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28045504

RESUMO

The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.


Assuntos
Biocombustíveis , Gasolina , Aerossóis , Poluentes Atmosféricos , Emissões de Veículos , Molhabilidade
14.
Environ Sci Technol ; 50(11): 5564-71, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27175613

RESUMO

Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.


Assuntos
Peróxido de Hidrogênio , Temperatura , Aerossóis/química , Oxirredução , Ozônio/química
15.
Environ Sci Technol ; 49(17): 10682-91, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26244891

RESUMO

Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.


Assuntos
Gasolina/análise , Hidrocarbonetos Aromáticos/análise , Veículos Automotores , Octanos/química , Material Particulado/análise , Emissões de Veículos/análise , Parafina/análise , Solubilidade , Fuligem/análise , Água/química , Molhabilidade
16.
Environ Sci Technol ; 49(11): 7021-31, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25938171

RESUMO

We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.


Assuntos
Poluentes Atmosféricos/análise , Gasolina/análise , Hidrocarbonetos Aromáticos/análise , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Carbono/análise , Monóxido de Carbono/análise , Gasolina/economia , Metano/análise , Peso Molecular , Óxidos de Nitrogênio/análise , Fuligem/análise
17.
Environ Sci Technol ; 48(23): 14016-24, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25375668

RESUMO

This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.


Assuntos
Poluentes Atmosféricos/química , Butanóis/química , Etanol/química , Gasolina/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Conservação de Recursos Energéticos , Efeito Estufa , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Material Particulado/análise , Fuligem
19.
Environ Sci Technol ; 47(19): 10980-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23957441

RESUMO

This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.


Assuntos
Arctostaphylos , Rosaceae , Raios Ultravioleta , Aerossóis , Biomassa , Fumaça , Tensão Superficial , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...