Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Clin Cardiol ; 47(5): e24283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767042

RESUMO

BACKGROUND: Semaglutide, a once-weekly glucagon-like peptide-1 receptor agonist, has shown promise in weight management and cardiovascular outcomes in other populations. This study aimed to evaluate the efficacy of semaglutide in heart failure with preserved ejection fraction (HFpEF) patients with obesity. METHODS: A retrospective study analyzed 318 patients with HFpEF, of which 104 received semaglutide and 214 received placebo. Primary endpoints included evaluating changes in exercise capacity and weight management. RESULTS: Semaglutide treatment led to significant improvements in the primary endpoints. Patients in the semaglutide group demonstrated substantial enhancements in exercise capacity, as measured by the 6-min walk distance, compared to the placebo group (mean difference 15.1 meters, 95% CI 5.8 to 24.4, p = 0.002). Additionally, semaglutide resulted in substantial weight loss compared to placebo (mean difference -2.9%, 95% CI -4.1--1.7, p = 0.001). Several secondary endpoints, including reductions in C-reactive protein levels and improvements in other clinical parameters, further supported the efficacy of semaglutide. Adverse events were generally well-tolerated, with no unexpected safety concerns. CONCLUSION: Semaglutide demonstrated significant clinical benefits in HFpEF patients with obesity, as evidenced by improved symptoms, physical function, and weight reduction.


Assuntos
Peptídeos Semelhantes ao Glucagon , Insuficiência Cardíaca , Obesidade , Volume Sistólico , Humanos , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Peptídeos Semelhantes ao Glucagon/efeitos adversos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Masculino , Feminino , Estudos Retrospectivos , Volume Sistólico/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Obesidade/complicações , Resultado do Tratamento , Idoso , Pessoa de Meia-Idade , Função Ventricular Esquerda/efeitos dos fármacos , Tolerância ao Exercício/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fatores de Tempo , Recuperação de Função Fisiológica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38702484

RESUMO

Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.

3.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757071

RESUMO

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

4.
Plant J ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761097

RESUMO

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.

5.
Front Bioeng Biotechnol ; 12: 1364700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694624

RESUMO

Dopamine is one of the most important neurotransmitters and plays a crucial role in various neurological, renal, and cardiovascular systems. However, the abnormal levels of dopamine mainly point to Parkinson's, Alzheimer's, cardiovascular diseases, etc. Hydroxyapatite (HAp), owing to its catalytic nature, nanoporous structure, easy synthesis, and biocompatibility, is a promising matrix material. These characteristics make HAp a material of choice for doping metals such as cobalt. The synthesized cobalt-doped hydroxyapatite (Co-HAp) was used as a colorimetric sensing platform for dopamine. The successful synthesis of the platform was confirmed by characterization with FTIR, SEM, EDX, XRD, TGA, etc. The platform demonstrated intrinsic peroxidase-like activity in the presence of H2O2, resulting in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The proposed sensor detected dopamine in a linear range of 0.9-35 µM, a limit of detection of 0.51 µM, limit of quantification of 1.7 µM, and an R2 of 0.993. The optimization of the proposed sensor was done with different parameters, such as the amount of mimic enzyme, H2O2, pH, TMB concentration, and time. The proposed sensor showed the best response at 5 mg of the mimic enzyme, pH 5, 12 mM TMB, and 8 mM H2O2, with a short response time of only 2 min. The fabricated platform was successfully applied to detect dopamine in physiological solutions.

6.
Behav Res Ther ; 178: 104542, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38648683

RESUMO

Evolutionary theorizing has given rise to the idea that responding to any particular threat may be more mandatory than responding to any particular reward. The present three experiments (total N = 375) sought to provide support for this perspective in an emotion dynamics task in which participants continuously rated their affective state in response to appetitive (reward-related) versus aversive (threat-related) images. Even when equating images for arousal and extremity, several negativity effects (e.g., steeper reactivity slopes in response to aversive images) were found. These negativity effects can serve as an experimental model of threat sensitivity, which should predispose some individuals, more than others, to symptoms related to fear and anxiety. This point was made with respect to sex differences, given that women (relative to men) are diagnosed with anxiety disorders at higher rates. Sex differences were pronounced and extensions of this work, both basic and applied, are proposed.

7.
Environ Sci Pollut Res Int ; 31(17): 24836-24850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456983

RESUMO

Chromium (Cr) contamination in soil-plant systems poses a pressing environmental challenge due to its detrimental impacts on plant growth and human health. Results exhibited that Cr stress decreased shoot biomass, root biomass, leaf relative water content, and plant height. However, single and co-application of Bacillus subtilis (BS) and arbuscular mycorrhizal fungi (AMF) considerably enhanced shoot biomass (+ 21%), root biomass (+ 2%), leaf relative water content (+ 26%), and plant height (+ 13) under Cr stress. The frequency of mycorrhizal (F) association (+ 5%), mycorrhizal colonization (+ 13%), and abundance of arbuscules (+ 5%) in the non-stressed soil was enhanced when inoculated with combined BS and AMF as compared to Cr-stressed soil. The co-inoculation with BS and AMF considerably enhanced total chlorophyll, carotenoids, and proline content in Cr-stressed plants. Cr-stressed plants resulted in attenuated response in SOD, POD, CAT, and GR activities when inoculated with BS and AMF consortia by altering oxidative stress biomarkers (H2O2 and MDA). In Cr-stressed plants, the combined application of BS and AMF considerably enhanced proline metabolism, for instance, P5CR (+ 17%), P5CS (+ 28%), OAT (- 22%), and ProDH (- 113%) as compared to control. Sole inoculation with AMF downregulated the expression of SIPIP2;1, SIPIP2;5, and SIPIP2;7 in Cr-stressed plants. However, the expression of NCED1 was downregulated with the application of sole AMF. In contrast, the relative expression of Le4 was upregulated in the presence of AMF and BS combination in Cr-stressed plants. Therefore, it is concluded that co-application of BS and AMF enhanced Cr tolerance by enhancing proline metabolism, antioxidant enzymes, and aquaporin gene expression. Future study might concentrate on elucidating the molecular processes behind the synergistic benefits of BS and AMF, as well as affirming their effectiveness in field experiments under a variety of environmental situations. Long-term research on the effect of microbial inoculation on soil health and plant production might also help to design sustainable chromium remediation solutions.


Assuntos
Micorrizas , Solanum lycopersicum , Humanos , Antioxidantes/metabolismo , Cromo , Peróxido de Hidrogênio/metabolismo , Micorrizas/fisiologia , Bactérias/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Solo , Água , Expressão Gênica , Raízes de Plantas/metabolismo
8.
Physiol Plant ; 176(2): e14256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38531421

RESUMO

The breeding of low phytic acid (LPA) crops is widely considered an effective strategy to improve crop nutrition, but the LPA crops usually have inferior seed germination performance. To clarify the reason for the suboptimal seed performance of LPA rice, this study investigated the impact of reduced seed phytic acid (InsP6) content in rice ins(3)P synthase1 (EC 5.5.1.4, RINO1), one of the key targets for engineering LPA rice, knockouton cellular differentiation in seed embryos and its relation to myo-inositol metabolism and auxin signalling during embryogenesis. The results indicated that the homozygotes of RINO1 knockout could initiate differentiation at the early stage of embryogenesis but failed to form normal differentiation of plumule and radicle primordia. The loss of RINO1 function disrupted vesicle trafficking and auxin signalling due to the significantly lowered phosphatidylinositides (PIs) concentration in seed embryos, thereby leading to the defects of seed embryos without the recognizable differentiation of shoot apex meristem (SAM) and radicle apex meristem (RAM) for the homozygotes of RINO1 knockout. The abnormal embryo phenotype of RINO1 homozygotes was partially rescued by exogenous spraying of inositol and indole-3-acetic acid (IAA) in rice panicle. Thus, RINO1 is crucial for both seed InsP6 biosynthesis and embryonic development. The lower phosphatidylinositol (4,5)-bisphosphate (PI (4,5) P2) concentration and the disorder auxin distribution induced by insufficient inositol supply in seed embryos were among the regulatory switch steps leading to aberrant embryogenesis and failure of seed germination in RINO1 knockout.


Assuntos
Inositol , Oryza , Inositol/metabolismo , Ácido Fítico/metabolismo , Oryza/genética , Sementes , Ácidos Indolacéticos/metabolismo
9.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462999

RESUMO

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Ovinos , Animais , Carragenina/farmacologia , Glicerol/farmacologia , Motilidade dos Espermatozoides , Espermatozoides , Crioprotetores/farmacologia , Criopreservação/veterinária , Criopreservação/métodos , Carneiro Doméstico , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Suplementos Nutricionais
10.
Open Med (Wars) ; 19(1): 20240905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463516

RESUMO

Hepatitis A virus (HAV) infection can cause extra-hepatic manifestations like myocarditis. An 8-year-old female with HAV infection presented with fever, abdominal pain, vomiting, and icterus. She developed viral myocarditis with complete AV dissociation on ECG and was treated with a temporary pacemaker, but her condition worsened, and she died. Hepatitis A viral infection can be associated with viral myocarditis and complete heart block that can lead to cardiogenic shock and death eventually.

11.
Microb Cell Fact ; 23(1): 83, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486280

RESUMO

BACKGROUND: Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity. RESULTS: We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3, and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3, at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3- to CO2. The highest RuBisCO activity of 2.13 nmol of NAD+/ µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2. Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited  ~ 3.4-fold slower reaction rate (0.37 min-1) than the biochemical assay when using 5% CO2. We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation. CONCLUSIONS: Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Oxirredução , Bioensaio , Carbono , Fotossíntese
12.
Sci Prog ; 107(1): 368504241236026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490163

RESUMO

Termites cause a serious menace to wooden structures all over the world. They rely mostly on entozoic fauna residing in their hindgut for the digestion of cellulosic and hemicellulosic materials. One of the ways to control termites is through their gut symbionts. The present study was designed to characterize the hindgut bacteria isolated from Odontotermes obesus and Heterotermes indicola. Furthermore, the growth inhibitory effect of eight tropical plant extracts was investigated to find out potential control agents for these bacterial isolates. The characterization of bacteria was carried out based on their morphology, Gram staining, biochemical and amplification of 16SrRNA gene. Amplified products were sequenced to confirm their relationship with bacterial isolates from termites of other regions. The growth inhibitory effect of ethanolic leaf extracts of eight plants was evaluated in an invitro agar well diffusion method. Qualitative and quantitative phytochemical analysis of the most effective plant was carried out to learn about bioactive agents. The results confirmed the presence of five bacteria from each termite species. The Bacillus cereus, Escherichia coli, and Lysinibacillus fusiformis were common to both termites whereas Lysinibacillus xylanilyticus and Lysinibacillus macrolides were found in O. obesus only and H. indicola harbor Bacillus subtilis and Shigella sonnei in addition to common three ones. Among the plant extracts of Carica papaya, Eucalyptus camaldulensis, Osmium basilicum, Grevillea robusta, Eucalyptus globulus, Pongamia pinnata, Mentha longifolia, and Melia azedarach, the G. robusta > E. camaldulensis > O. basilicum were found to have growth inhibitory effects with increasing concentrations from 100 to 2000 µg/mL. The biodiversity of the bacterial fauna is important for the biological control of termites. Leaf extracts of these medicinal plants can be used to control termite infestation in an environment-friendly manner to save huge economic loss.


Assuntos
Isópteros , Animais , Isópteros/microbiologia , Bactérias/genética , Extratos Vegetais/farmacologia , Biodiversidade
13.
Luminescence ; 39(3): e4724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523053

RESUMO

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Assuntos
Óxido de Alumínio , Óxido de Magnésio , Cristalografia por Raios X , Eletrônica
15.
Ann Med Surg (Lond) ; 86(2): 958-967, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333313

RESUMO

Background: Hypertension has significantly contributed to morbidity and mortality, necessitating effective management. Angiotensin receptor blockers (ARBs) have emerged as a cornerstone in hypertension treatment. Azilsartan, a relatively recent addition to the ARB family, offers unique characteristics, including prodrug activation. This systematic review and meta-analysis aimed to evaluate Azilsartan's role in reducing clinical blood pressure compared to other ARBs and determine the most effective dosage. Methods: Following PRISMA guidelines, a comprehensive literature search was conducted in Medline, Web of Science, Cochrane Library, and clinicaltrials.gov. Eligible studies included adult hypertensive patients receiving Azilsartan compared to other ARBs, with clinical systolic blood pressure (SBP) and diastolic blood pressure (DBP) outcomes. Data extraction and quality assessment were performed, and statistical analysis employed comprehensive meta-analysis (CMA) software. Results: Eleven randomized controlled trials encompassing 18 studies involving 6024 patients were included. Azilsartan demonstrated significant reductions in clinical SBP (mean difference=-2.85 mmHg) and DBP (mean difference=-2.095 mmHg) compared to other ARBs. Higher doses of Azilsartan showed greater efficacy, with 80 mg exhibiting the most substantial reduction in SBP. The analysis emphasized the need for more studies investigating lower Azilsartan doses (10 and 20 mg). Conclusion: This systematic review and meta-analysis underscore Azilsartan's effectiveness in reducing SBP and DBP. Dose-dependent effects emphasize the importance of optimal dosing when prescribing Azilsartan. These findings provide valuable insights for clinicians in managing hypertension effectively and call for further research, primarily focusing on lower Azilsartan doses and a more diverse patient population.

16.
Front Bioeng Biotechnol ; 12: 1338920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390362

RESUMO

Hydrogen peroxide (H2O2) is one of the main byproducts of most enzymatic reactions, and its detection is very important in disease conditions. Due to its essential role in healthcare, the food industry, and environmental research, accurate H2O2 determination is a prerequisite. In the present work, Morus nigra sawdust deposited zinc oxide (ZnO) nanoparticles (NPs) were synthesized by the use of Trigonella foenum extract via a hydrothermal process. The synthesized platform was characterized by various techniques, including UV-Vis, FTIR, XRD, SEM, EDX, etc. FTIR confirmed the presence of a Zn‒O characteristic peak, and XRD showed the hexagonal phase of ZnO NPs with a 35 nm particle size. The EDX analysis confirmed the presence of Zn and O. SEM images showed that the as-prepared nanoparticles are distributed uniformly on the surface of sawdust. The proposed platform (acetic acid-capped ZnO NPs deposited sawdust) functions as a mimic enzyme for the detection of H2O2 in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) colorimetrically. To get the best results, many key parameters, such as the amount of sawdust-deposited nanoparticles, TMB concentration, pH, and incubation time were optimized. With a linear range of 0.001-0.360 µM and an R2 value of 0.999, the proposed biosensor's 0.81 nM limit of quantification (LOQ) and 0.24 nM limit of detection (LOD) were predicted, respectively. The best response for the proposed biosensor was observed at pH 7, room temperature, and 5 min of incubation time. The acetic acid-capped sawdust deposited ZnO NPs biosensor was also used to detect H2O2 in blood serum samples of diabetic patients and suggest a suitable candidate for in vitro diagnostics and commercial purposes.

17.
RSC Adv ; 14(9): 6165-6177, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38375010

RESUMO

Sorption-based atmospheric water harvesting (SBAWH) is a highly promising approach for extracting water from the atmosphere thanks to its sustainability, exceptional energy efficiency, and affordability. In this work, ZnFe2O4 and Zn0.4Co0.6Fe2O4 were evaluated for moisture adsorption. The desired materials were synthesized by a surfactant-assisted sol-gel method. Synthesized samples were characterized using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometry (VSM), and point of zero charge (PZC). Crystallinity and phase composition were evaluated by XRD analysis. Several parameters were determined using XRD analysis: lattice parameter, unit cell volume, crystallite size, and bulk density. The morphology of synthesized materials was assessed via SEM, and unveiled the acquisition of consistent, homogeneous, and uniform crystals. Elemental composition was determined through EDX spectroscopy. Water adsorption on the surface was evaluated by FTIR spectroscopy. The magnetic properties of synthesized ZnFe2O4 and cobalt-doped ZnFe2O4 ferrites were investigated using VSM. The negative charge on the Zn0.4Co0.6Fe2O4 surface was explored using PZC. Adsorption studies on synthesized materials were conducted with the help of an atmospheric water harvesting (AWH) plant created by our team. Moisture adsorption isotherms of synthesized materials were determined using a gravimetric method under varying temperature and relative humidity (45-95%) conditions. The moisture content (Mc) of Zn0.4Co0.6Fe2O4 and ZnFe2O4 was 597 mg g-1 and 104 mg g-1, respectively. Key thermodynamic properties, including isosteric heat of adsorption (Qst), change in Gibbs free energy (ΔG), and change in sorption entropy (ΔS), were evaluated. Qst was negative, which confirmed the sorption of water vapors on the material surface. ΔG and ΔS indicated that water-vapor adsorption was spontaneous and exothermic. A second-order kinetics study was carried out on synthesized materials, demonstrating their chemisorption behavior. The latter was due to the oxygen defects created by replacement of Co2+ and Fe3+ at tetrahedral and octahedral sites. Water vapors in the atmosphere became attached to the surface and deprotonation occurred, and the hydroxyl ions were formed. Water vapor attached to these hydroxyl ions. A second-order kinetics study was carried out to confirm the chemisorption behavior of synthesized materials.

18.
J Trace Elem Med Biol ; 83: 127411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387428

RESUMO

BACKGROUND: This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS: The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS: Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS: Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION: The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Óxido de Zinco/toxicidade , Ratos Sprague-Dawley , Sêmen , Nanopartículas/toxicidade , Testosterona
19.
Chemosphere ; 346: 140507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303379

RESUMO

Cadmium (Cd) stress causes serious damage to plants, inducing various physiological and biochemical disruptions that lead to reduced plant biomass and compromised growth. The study investigated the combined effects of silicon (Si) and arbuscular mycorrhizal fungi (AMF) on mitigating Cd stress in plants, revealing promising results in enhancing plant tolerance to Cd toxicity. Under Cd stress, plant biomass was significantly reduced (-33% and -30% shoot and root dry weights) as compared to control. However, Si and AMF application ameliorated this effect, leading to increased shoot and root dry weights (+47% and +39%). Furthermore, Si and AMF demonstrated their potential in reducing the relative Cd content (-43% and -36% in shoot and root) in plants and positively influencing plant colonization (+648%), providing eco-friendly and sustainable strategies to combat Cd toxicity in contaminated soils. Additionally, the combined treatment in the Cd-stressed conditions resulted in notable increases in saccharide compounds and hormone levels in both leaf and root tissues, further enhancing the plant's resilience to Cd-induced stress. Si and AMF also played a vital role in positively regulating key lignin biosynthesis genes and altering lignin-related metabolites, shedding light on their potential to fortify plants against Cd stress. These findings underscore the significance of Si and AMF as promising tools in addressing Cd toxicity and enhancing plant performance in Cd-contaminated environments.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/metabolismo , Cádmio/análise , Zea mays/metabolismo , Lignina/análise , Silício/farmacologia , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
20.
RSC Adv ; 14(10): 7022-7030, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414991

RESUMO

Uric acid (UA) is a significant indicator of human health because it is linked to several diseases, including renal failure, kidney stones, arthritis, and gout. Uric acid buildup in the joints is the source of chronic and painful diseases. When UA is present in large quantities, it causes tissue injury in the joints that are afflicted. In this research, silver oxide-doped activated carbon nanoparticles were synthesized and then functionalized with an ionic liquid. The synthesized nanomaterial assembly was employed as a colorimetric sensing platform for uric acid. Activated carbon offers a large internal surface area that acts as a good carrier for catalytic reactions. A salt-melting approach was used to synthesize the silver oxide-doped activated carbon nanocomposite. The synthesis was confirmed through various techniques, such as UV-vis spectrophotometer, FTIR, XRD, SEM, and EDX. The colorimetric change from blue-green to colorless was observed with the naked eye and confirmed by UV-vis spectroscopy. To obtain the best colorimetric change, several parameters, such as pH, capped NP loading, TMB concentration, hydrogen peroxide concentration, and time, were optimized. The optimized experimental conditions for the proposed sensor were pH 4 with 35 µL of NPs, a 40 mM TMB concentration, and a 4 minutes incubation time. The sensor linear range is 0.001-0.36 µM, with an R2 value of 0.999. The suggested sensor limits of detection and quantification are 0.207 and 0.69 nM, respectively. Potential interferers, such as ethanol, methanol, urea, Ca2+, K+, and dopamine, did not affect the detection of uric acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...