Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5213, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433272

RESUMO

Separating copper and cobalt ions is crucial due to the industry's strategic reliance on both these elements. When the extraction process is able to significantly increase the separation factor, it becomes favorable to separate two ions. However, the presence of Cu(II) ions together with Co(II) hinders the achievement of optimum efficiency when using commonly available extractants. This study conducted the separation of the two elements using both batch and continuous methods in a pilot plant pulsed column equipped with a disc and doughnut structure. The initial step involved optimizing the key variables to maximize the separation factor using the central composite design procedure. The optimization of Cyanex272, Cyphos IL 101 concentrations, and the pH value of the aqueous phase were all adjusted to 0.024 M, 0.046 M, and 7.3, correspondingly. In the following step, the hydrodynamic characteristics and extraction performance were examined in the pulsed column of the pilot plant. The findings indicated that the presence of Cyphos IL 101 resulted in an increased separation factor and efficiency within the column. As a result, the ionic liquid enhances performance without encountering any operational issues. This additive is considered an environmentally friendly solvent and does not cause any negative impacts. Consequently, it is suggested for utilization in continuous industrial processes.

2.
Sci Rep ; 14(1): 3273, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332018

RESUMO

A new type of Tenova pulsed extraction column was introduced in 2017. It is the newest generation of pulsed columns. Due to the internal equipment of this column and the lack of moving parts and the simplicity and speed of repairs and maintenance, it has been the focus of researchers in recent years. No correlations for predicting the mean drop size and drop size distribution of the Tenova column have been reported. The Sauter mean drop diameter and drop size distribution are investigated for a Tenova pulsed column with a diameter and an active height of 7.4 and 73 cm, respectively. Three standard chemical systems of isobutyl acetate-water, isobutanol-water, and toluene-water have been used. The effects of pulse intensity, dispersed and continuous phase flow rates have been taken into account. In each experiment, 200-300 drops have been analyzed in a total of 10,000 drops. The investigation covered a spectrum of physical properties, notably surface tension (within a range of 1.75-36 mN/m). Operating conditions including pulse intensity (in the range of 0.2-2 cm/s) and the flow rate of continuous and dispersed phases (in the range of 8-30 L/h) have been investigated. Methods based on artificial intelligence (AI) such as multilayer perceptron neural networks and gene expression programming were combined with a dimensional analysis approach to provide a new approach to estimating the mean drop diameter (d32). Experimental results have been compared with the equations found by other researchers in similar columns. The variation of drop size distribution has also been experimentally obtained.Methods based on artificial intelligence (AI) such as multilayer perceptron neural networks and gene expression programming were combined with a dimensional analysis approach to provide a new approach to estimating the mean drop diameter (d32). Experimental results have been compared with the equations found by other researchers in similar columns. The variation of drop size distribution has also been experimentally obtained.

3.
Sci Rep ; 14(1): 3882, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366075

RESUMO

Recently, efficient techniques to remove indium ions from e-waste have been described due to their critical application. This paper illustrates the recovery of indium ions from an aqueous solution using a liquid membrane. CyphosIL 104 described the excellent potential for the extraction of indium ions. Evaluation of the five process parameters, such as indium concentration (10-100 mg/L), carrier concentration (0.05-0.2 mol/L), feed phase acidity (0.01-3 mol/L), chloride ion concentration (0.5-4 mol/L) and the stripping agent concentration (0.1-5 mol/L) were conducted. The interactive impacts of the various parameters on the extraction efficiency were investigated. The response surface methodology (RSM) and artificial neural network (ANN) were employed to model and compare the FS-SLM process results. RSM model with a quadratic equation (R2 = 0.9589) was the most suitable model for describing the efficiency. ANN model with six neurons showed a prediction of extraction efficiency with R2 = 0.9860. The best-optimized data were: 73.92 mg/L, 0.157 mol/L, 1.386 mol/L, 2.99 mol/L, and 3.06 mol/L for indium concentration, carrier concentration, feed phase acidity, chloride ion concentration, and stripping agent concentration. The results achieved by RSM and ANN led to an experimentally determined extraction efficiency of 93.91%, and 94.85%, respectively. It was close to the experimental data in the optimization condition (95.77%). Also, the evaluation shows that the ANN model has a better prediction and fitting ability to reach outcomes than the RSM model.

4.
Sci Rep ; 14(1): 4902, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418589

RESUMO

The current study develops comprehensive mass transfer models to optimize the rare earth extraction. A plug flow, axial dispersion, backflow, forward mixing-based mass transfer model was created and solved numerically using the fitting technique. The investigated process is a multi-impeller agitated column designed to provide proper contact between organic and aqueous phases to extract rare-earth ions. Taking Sm(III)-Gd(III) separation as an application case, extraction efficiency in the agitation speed of 200 rpm was obtained equal to 95.14%, 76.67% by this column for Gd(III), and Sm(III) ions, respectively. The model's findings were compared with experimental data, and a significant agreement was achieved with the forward mixing model. The results indicated that the high agitation speed is beneficial to increasing the interfacial area while reducing the mass-transfer coefficient. On the contrary, the circulation within the larger droplet improves the transfer of mass, albeit at the expense of reducing the interfacial area. The results showed that the drop size distribution is a crucial factor as the droplet sizes significantly affect the droplet mass transfer. The mathematical models' values of Ec for mass transfer parameters showed that the operational variables significantly affect the mass transfer rate and can cause deviations from the ideal flow path. A reasonable and appropriate estimation of the organic-side volumetric overall mass transfer coefficient was provided, which can be applied to this contactor's design and scale-up.

5.
Sci Rep ; 14(1): 252, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168917

RESUMO

In this study, electrospun polyacrylonitrile nanofibers were effectively functionalized for enhanced molybdenum ion adsorption through a multi-step approach. Initially, glycidyl methacrylate was grafted onto the nanofibers via irradiation-induced grafting polymerization, followed by chemical modification with various amino groups, with triethylamine identified as the optimal modifier. The impacts of key synthesis parameters and reaction conditions on grafting level and adsorption capacity were thoroughly investigated, with a focus on achieving maximum efficiency. The resulting nanofibers were characterized using FTIR, SEM, and BET techniques, confirming the successful modification and structural features conducive to adsorption. Furthermore, a comprehensive experimental design, incorporating a central composite design, yielded optimal conditions for molybdenum adsorption, with key parameters including monomer concentration, irradiation dose, adsorbent mass, initial concentration, time, pH, temperature, and amine concentration. The adsorption kinetics were effectively described by the pseudo-second-order model, while the Langmuir isotherm model provided valuable insight into the adsorption behavior. Impressively, the adsorbent exhibited exceptional adsorption efficiency, surpassing 98% even after six adsorption-desorption cycles using 0.5 M HCl. Thermodynamic analysis revealed the exothermic nature of the adsorption process, along with decreased entropy and overall spontaneity, underlining the favorable conditions for molybdenum adsorption. Notably, the synthesized adsorbent demonstrated notable selectivity for molybdenum and achieved an impressive adsorption capacity of 109.79 mg/g, highlighting its potential for practical applications in molybdenum removal from aqueous solutions.

6.
Sci Rep ; 13(1): 6173, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061577

RESUMO

In this study, a new adsorbent was investigated for CO2 adsorption in the fixed-bed column. Poly (acrylonitrile) nanofibers were prepared by electrospinning, then grafting under gamma irradiation with glycidyl methacrylate (GMA). Then, the nanofibers were modified with ethanolamine (EA), diethylamine (DEA) and triethylamine (TEA) to adsorb carbon dioxide molecules. Dynamic adsorption experiments were performed with a mixture of CH4, CO2 in a constant bed column at ambient pressure and temperature and CO2 feed concentration (5%). The maximum adsorption capacity is 2.84 mmol/g for samples with 172.26% degree of grafting (DG) in 10 kGy. Also, the degree of amination with ethanolamine was achieved equal to 170.83%. In addition, the reduction of the regeneration temperature and the stability of this adsorbent after four cycles indicated the high performance of this adsorbent for CO2 adsorption.

7.
Sci Rep ; 13(1): 1146, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670143

RESUMO

Traditional solvent extraction (SX) procedures limit metal separation and purification, which consist of the organic and aqueous phases. Because differences in metal ion solvation lead to distinct distribution properties, non-aqueous solvent extraction (NASX) considerably expands the scope of solvent extraction by replacing the aqueous phase with alternate polar solvents. In this study, an experimental design approach used non-aqueous solvent extraction to extract cobalt from zinc plant residue. The aqueous phase comprises ethylene glycol (EG), LiCl and metal ions. In kerosene, D2EHPA, Cyanex272, Cyanex301, and Cyanex302 extractants were used as a less polar organic phase. Various factors were investigated to see how they affected extraction, including solvent type, extractant type and phase ratio, pH, Co(II) concentration, and temperature. The results revealed that at a concentration of 0.05 M, the Cyanex301 extractant could achieve the requisite extraction efficiency in kerosene. The optimal conditions were chosen as the concentration of Cyanex 301 (0.05 M), the concentration of cobalt (833 ppm), the pH (3.5), and the percent of EG (80%). As a result, during the leaching process, these systems are advised for extracting and separating a combination of various metal ions.

8.
Sci Rep ; 12(1): 17302, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243885

RESUMO

Today, biphasic aqueous systems have received more attention than conventional separation methods due to their advantages, such as biocompatibility, low cost, and easy operation. The extraction of cobalt ions from the aqueous phase with the absence and the presence of other ions was investigated using polyethylene glycol, and ammonium sulfate salt without using an extractant. The efficiency was evaluated using operating parameters such as aqueous pH, salt and polymer concentrations, phase volume ratio, and initial metal concentration. The higher temperature, and the lower aqueous pH showed a maximum transfer rate for cobalt ions into the PEG1000 phase. Extraction efficiency under optimal conditions equal to 50% (w/w) polyethylene glycol 1000, 4 M ammonium sulfate, aqueous pH = 2, and 15 min extraction time was over 98%. Results from infrared spectroscopy, and thermo-gravimetric analysis illustrated the presence of the PEG-cobalt ion complex. The observation demonstrated that the biphasic system is the proper technology for wastewater purification.


Assuntos
Cobalto , Águas Residuárias , Sulfato de Amônio , Polietilenoglicóis/química , Cloreto de Sódio , Água/química
9.
Sci Rep ; 12(1): 1609, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102211

RESUMO

The current study focuses on the recovery of zinc ions by solvent extraction in the pulsed contactor. The Zn(II) ions from chloride solution were extracted into the organic phase containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) extractant. The resulting data were characterized for the relative amount of (a) pulsed and no-pulsed condition; and (b) flow rate of both phases. Based on the mass balance equations for the column performance description, numerical computations of mass transfer in a disc-donut column were conducted and validated the experimental data for zinc extraction. Four different models, such as plug flow, backflow, axial dispersion, and forward mixing were evaluated in this study. The results showed that the intensification of the process with the pulsed condition increased and achieved higher mass transfer rates. The forward mixing model findings based on the curve fitting approach validated well with the experimental data. The results showed that an increase in pulsation intensity, as well as the phase flow rates, have a positive impact on the performance of the extractor. In contrast, the enhancement of flow rate led to the reduction of the described model parameters for the adverse phase.

10.
Sci Rep ; 11(1): 18317, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526607

RESUMO

Nowadays, radiation grafting polymer adsorbents have been widely developed due to their advantages, such as low operating cost, high efficiency. In this research, glycidyl methacrylate monomers were grafted on polypropylene polymer fibers by simultaneous irradiation of gamma-ray with a dose of 20 kGy. The grafted polymer was then modified using different amino groups and tested for adsorption of cobalt ions in an aqueous solution. Finally, the modified polymer adsorbent with a high efficiency for cobalt ions adsorption was synthesized and tested. Different modes of cobalt ions adsorption were tested in other adsorption conditions, including adsorption contact time, pH, different amounts of adsorbent mass, and different concentrations of cobalt ions solution. The adsorbent structure was characterized with FT-IR, XRD, TG and SEM techniques and illustrated having an efficient grafting percentage and adsorption capability for cobalt removing by batch experiments. The optimum conditions were obtained by a central composite design: adsorbent mass = 0.07 g, initial concentration = 40 mg/L, time = 182 min, and pH = 4.5 with ethylenediamine as a modified monomer and high amination percentage. Kinetics and equilibrium isotherms observation described that the experimental data followed pseudo-second-order and Langmuir models, respectively. The maximum adsorption capacity from Langmuir isotherm capacity is obtained equal to 68.02 mg/g.

11.
ACS Omega ; 5(30): 18700-18709, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775872

RESUMO

In this study, the features of the solvent extraction technique were investigated to explore the potential of ionic liquid for extracting Eu(III) from aqueous solution. The transport process between the aqueous and organic phase was carried out in the rotating disk column with an asymmetrical structure and a continuous mode of operation. The utilization of Cyphos IL 104 as an ionic liquid in comparison with Cyanex272 extractant was evaluated for the extraction abilities in the recovering of Eu(III) under different conditions, including agitation speed, inlet aqueous, and solvent phase velocities. The degree of extraction and the mass-transfer rate were best when the agitation speed and the superficial velocities of aqueous and solvent phases were adjusted to 690 rpm, 0.831 mm/s, and 1.385 mm/s, respectively. The better efficiency was achieved using the ionic liquid with 0.02 mol/L concentration, 96.52% Eu(III) extraction in comparison to the same condition without the presence of ionic liquids with Cyanex272 (0.5 mol/L, 99.66%). With the analysis of the data, it was noted that the increase in the operating parameters has a positive influence on the holdup, degree of extraction, and mass-transfer rates. The percentage increase equal to 33.57% for overall mass-transfer coefficients was obtained with the increment of mixing in the column. The results showed that the mass transfer is associated with reactive resistance. The previous correlation did not explain the behavior of the system correctly in the reactive mode. Finally, the empirical models using the Sherwood number were developed to correlate the mass-transfer coefficient.

12.
Environ Sci Pollut Res Int ; 24(3): 2627-2631, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27830413

RESUMO

Passive samplers are of the most applied methods and tools for measuring concentration of hydrophobic organic compounds in water (c 1W ) in which the polymer-water partition coefficients (D) are of fundamental importance for reliability of measurements. Due to the cost and time associated with the experimental researches, development of a predictive method for estimation and evaluation of performance of polymeric passive samplers for various hydrophobic organic compounds is highly needed and valuable. For this purpose, in this work, following the fundamental chemical thermodynamic equations governing the concerned local equilibrium, successful attempts were made to establish a theoretical model of polymer-water partition coefficients. Flory-Huggins model based on the Hansen solubility parameters was used for calculation of activity coefficients. The method was examined for reliability of calculations using collected data of three polymeric passive samplers and ten compounds. A regression model of form ln(D) = 0.707ln(c 1p ) - 2.7391 with an R 2  = 0.9744 was obtained to relate the polymer-water partition coefficients (D) and concentration of hydrophobic organic compounds in passive sampler (c 1p ). It was also found that polymer-water partition coefficients are related to the concentration of hydrophobic organic compounds in water (c 1W ) as ln(D) = 2.412ln(c 1p ) - 9.348. Based on the results, the tie lines of concentration for hydrophobic organic compounds in passive sampler (c 1p ) and concentration of hydrophobic organic compounds in water (c 1W ) are in the form of ln(c 1W ) = 0.293ln(c 1p ) + 2.734. The composition of water sample and the interaction parameters of dissolved compound-water and dissolved compound-polymer, temperature, etc. actively influence the values of partition coefficient. The discrepancy observed over experimental data can be simply justified based on the local condition of sampling sites which alter these effective factors.


Assuntos
Monitoramento Ambiental/métodos , Polímeros , Poluentes Químicos da Água/análise , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Compostos Orgânicos/química , Hidrocarbonetos Policíclicos Aromáticos , Reprodutibilidade dos Testes , Solubilidade , Temperatura , Água/química
13.
Talanta ; 137: 167-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770621

RESUMO

Ultrasound leaching-solid phase extraction (USL-SPE) followed by dispersive-solidification liquid-liquid microextraction (DSLLME) was developed for preconcentration and determination of organophosphorus pesticides (OPPs) in soil samples prior gas chromatography-mass spectrometry analysis. At first, OPPs were ultrasonically leached from soil samples by using methanol. After centrifugation, the separated methanol was diluted to 50 mL with double-distillated water and passed through the C18 SPE cartridge. OPPs were eluted with 1 mL acetonitrile. Thus, 1 mL acetonitrile extract (disperser solvent) and 10 µL 1-undecanol (extraction solvent) were added to 5 mL double-distilled water and a DSLLME technique was applied. The variables of interest in the USL-SPE-DSLLME method were optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). Under the optimum conditions, the enrichment factors were 6890-8830. The linear range was 0.025-625 ng g(-1) and limits of detection (LODs) were between 0.012 and 0.2 ng g(-1). The relative standard deviations (RSDs) were in the range of 4.06-8.9% (n=6). The relative recoveries of OPPs from different soil samples were 85-98%.


Assuntos
Microextração em Fase Líquida/métodos , Modelos Teóricos , Compostos Organofosforados/análise , Compostos Organofosforados/isolamento & purificação , Solo/química , Extração em Fase Sólida/métodos , Ondas Ultrassônicas , Cromatografia Gasosa-Espectrometria de Massas , Praguicidas/análise , Praguicidas/isolamento & purificação , Solventes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
14.
Talanta ; 123: 25-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24725860

RESUMO

Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e).


Assuntos
Arsênio/análise , Microextração em Fase Líquida/métodos , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Algoritmos , Arsênio/isolamento & purificação , Dodecanol/química , Água Potável/química , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Iodeto de Potássio/química , Pirrolidinas/química , Reprodutibilidade dos Testes , Rios/química , Água do Mar/química , Solventes/química , Tiocarbamatos/química , Tiossulfatos/química , Poluentes Químicos da Água/isolamento & purificação , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...