Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(23): 5950-5958, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30734404

RESUMO

Cobalt hexacyanoferrate of various compositions was prepared in flow mode and the role of the vacancy on the structure, thermogravimetric (TG) properties, and the adsorption efficiency was studied. The material, Nay Co[Fe(CN)6 ]1-x ⋅z H2 O, with a minimum vacancy of x=0.014 to the highest x=0.47, was obtained. The TG-differential scanning calorimetry (DSC) profile showed a distinct influence of the vacancy on the water release temperature. Materials with x>0.35 showed a smooth release of water at a relatively lower temperature. However, for the materials with x<0.35, water release took place in multiple steps, suggesting the existence of various forms of water. The FTIR profiles supported the existence of free and bonded water molecules. However, the materials with multiple water peaks in the FTIR spectra showed a shift of the major XRD peaks when heated at 285 °C in N2 atmosphere. Regarding the effect of the vacancy on the adsorption behavior, for NH4 , the adsorption was found to be proportional to the number of Na atoms in the material, confirming the ion-exchange process. On the contrary, the materials with low vacancy and high Na content showed nominal Cs adsorption capacity. Interestingly, the K adsorption capacity was found to be in between that of the other two ions. This means the ionic size decides the rate of placement into the interstitial sites. For larger ions like Cs, the ease of percolation via the vacancy decides the overall adsorption efficiency.

2.
Chem Commun (Camb) ; 54(84): 11961-11964, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30289136

RESUMO

As an adsorbent of gaseous ammonia, cobalt hexacyanocobaltate (CoII3[CoIII(CN)6]2) was proved to have good sorption even at high temperatures, with thermal recyclability in sorption-desorption cycles. The maximum sorption capacities evaluated with a dual-site Langmuir model are 25.2, 18.6, 8.6, and 2.1 mmol g-1 at 20, 100, 150, and 250 °C, respectively.

3.
RSC Adv ; 8(65): 37356-37364, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35557789

RESUMO

Metal hexacyanoferrates (MHCFs), also called Prussian blue analogs, are known as electrochemical electrodes and are ion-adsorbent. To investigate the effect of the ionic radius of the adsorbate (cations adsorbed upon reduction) and the pore size of the adsorbent (porous electrode that stores cations upon reduction), we investigated the electrochemical reactions with various alkali cations and by changing the metal sites of the MHCFs. First, we succeeded in controlling the pore sizes of the MHCFs, where the lattice constant a could be estimated as a = 0.98D sum + 7.21, where D sum represented the sum of the ionic diameters of the metal M and Fe. Concerning the electrochemical reaction, the redox potential increased when the hydration energy of the adsorbate decreased, implying that the hydration energy of the adsorbate affected the stability of the reduced state. With cadmium hexacyanoferrate, which has a large pore size, the variation of the redox potential was suppressed in comparison to that with copper hexacyanoferrate, which has a small pore size. With Fourier transform-infrared (FT-IR) analysis before and after the redox reactions, Na+ insertion accompanied by H2O was presumed in the reduced state.

4.
ACS Appl Mater Interfaces ; 5(24): 12984-90, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24295275

RESUMO

Nanoparticle (NPs) film of copper hexacyanoferrate (CuHCF(III)) was developed for electrochemically cesium separation from wastewater. Different form the electro- or chemical deposited films, CuHCF(III) NPs were firstly covered with ferrocyanide anions, so that they can be well dispersed in water and formed ink. Then CuHCF(III) NPs can be uniformly coated by simple wet printing methods, so it is feasible to prepare NPs film of any sizes, or any patterns at low cost. This process provided a promising technology for preparing large scale electrodes for sequential removal of Cs from wastewater in the columns. Cs separation can be controlled by an electrically switched ion exchange (ESIX) system. Effect of temperatures, and ionic strength on Cs removal was investigated. Thermodynamics results showed that Cs adsorption process was exothermic in nature and favored at low temperature. Ionic strength study indicated the CuHCF(III) film can selectively separate Cs in wide ionic strength range from 1 × 10(-4) to 1 × 10(-1) M Na(+). XPS results demonstrated that the electrochemical oxidation-reduction of Fe (II/III) made contributions to Cs separation.


Assuntos
Césio/química , Cobre/química , Nanopartículas/química , Purificação da Água , Césio/toxicidade , Ferrocianetos/química , Humanos , Termodinâmica , Águas Residuárias , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...