Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(15): 8215-8221, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518686

RESUMO

This study describes new actuators with cellulose nanofibers, single-walled carbon nanotubes and ionic liquids (CNFs/SWCNTs/ILs) and examines the electrochemical and electromechanical properties of CNF/SWCNT/IL gel hybrid actuators. Further, the effects of the CNF species present on the electrode and the electrolyte layer species of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF(HFP)) or CNF/IL on the electrochemical and electromechanical properties of the low-voltage electroactive polymer actuators are investigated. The CNF/SWCNT/IL structure revealed a network of highly entangled CNFs and SWCNTs. The results indicated that the CNF/SWCNT/IL electrodes and the PVdF(HFP)/IL electrolyte actuators can significantly outperform the CNF/SWCNT/IL electrodes and the CNF/IL electrolyte actuators. PVdF(HFP) was considered to be a better polymer electrolyte than CNF. Further, the frequency dependences of the displacement responses of these CNF/SWCNT/IL electrode actuators were successfully simulated using a double-layered charging kinetic model. The equivalent circuit models exhibited by the PVdF(HFP)/IL electrolyte actuators are different when compared to those exhibited by the CNF/IL electrolyte actuators. Based on the results of this study, the CNF/SWCNT/IL electrodes and the PVdF(HFP)/IL electrolyte actuators are promising for application as electrochemical materials that are useful in real-world applications, including wearable and energy-conversion devices.

2.
RSC Adv ; 8(32): 17732-17738, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35542075

RESUMO

This paper describes the effect of ethylene glycol on the performance of actuators with poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/vapor-grown carbon fiber/ionic liquid/ethylene glycol (PEDOT:PSS/VGCF/IL/EG) structures. These devices exhibit superior strain performances compared to devices using PEDOT:PSS/VGCF/IL. EG is assumed to assist in the formation of three-dimensional conducting networks between small PEDOT:PSS domains. This is because it helps to remove insulating PSS from the surface of the PEDOT/PSS grains and facilitates the crystallization of PEDOT. Therefore, EG helps to increase the specific capacitance, strain, and maximum generated stress compared to the values obtained using a PEDOT:PSS/VGCF/IL actuator. Therefore, these new, flexible, and robust films may have significant potential for their use as actuator materials in wearable energy conversion devices. A double-layer charging kinetic model was developed to account for the oxidation and reduction reactions of PEDOT:PSS, and this model is similar to that proposed for PEDOT:PSS/VGCF/IL/EG actuators. This model was successfully applied to simulate the frequency-dependent displacement responses of the actuators.

3.
RSC Adv ; 8(58): 33149-33155, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35548137

RESUMO

This paper describes new actuators with cellulose nanofiber/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/ionic liquid (CNF/PEDOT:PSS/IL) structures. Devices containing these structures exhibit higher strain and maximum generated stress than those based on only PEDOT:PSS/IL. The new actuator system contains an electrode, which is an electrochemical capacitor, and which consists of both a faradaic capacitor (FC) and a small electric double-layer capacitor (EDLC), i.e., PEDOT:PSS. This combined capacitor plays the role of an FC and a base polymer, and the CNF skeleton is used in the place of carbon nanotubes (CNTs). This device therefore functions differently from traditional CNT/PVdF-HFP/IL actuators, which are only used as EDLC units and from PEDOT:PSS/vapor-grown carbon nanofibers (VGCF)/IL actuators, which are used as hybrid (FC and EDLC) units. The developed films are novel, robust, and flexible, and demonstrate potential as actuator materials for wearable energy-conversion devices. A double-layer charging kinetic model, which is similar to that previously proposed for PEDOT:PSS/CNT/IL actuators, is developed to explain the oxidation and reduction of PEDOT:PSS. This model successfully simulates the frequency-dependent displacement response of actuators.

4.
Langmuir ; 33(42): 11574-11581, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28796520

RESUMO

The phase behavior of ions in porous electrodes is qualitatively different from that in the bulk because of the confinement effect and the interaction between the electrode surface and the electrolyte ions. We found that porous electrodes of which the pore size is close to the size of the electrolyte ions can show ferroelectric phase behaviors in some conditions by Monte Carlo simulations of simple models. The phase behavior of the porous electrodes dramatically changes as a function of the pore size of the porous electrode and that is compared to the phase behavior of typical ferroelectric materials, for which the phase behavior changes as a function of the temperature or the composition. The origin of the phase behavior is discussed in terms of the molecular interaction and the ionic structure inside the porous electrodes. We also found that the density of counterions and that of co-ions inside porous electrodes changes in a nonlinear fashion as a function of the applied voltage, which is in agreement with the experimental results.

5.
Faraday Discuss ; 199: 405-422, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428985

RESUMO

We investigate the electromechanical properties of bucky-gel electrochemical actuators incorporating various amounts of single-walled carbon nanotubes and an ionic liquid electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate, that are able to convert electrochemical energy into mechanical energy. The interplay between mechanical and electrochemical effects is studied. The electromechanical responses are investigated by means of electrochemical impedance spectroscopy and bending displacement measurements. We develop a theoretical model that allows us to rationalize the electromechanical properties of the bucky-gel actuators. This model takes into account electrochemical stress due to the intercalation (de-intercalation) process, which generates the strain and bending of the actuators. We then analyze the relationship between the strain and the real part of the complex capacitance by introducing a strain-capacitance coefficient. This coefficient is related to the electrochemical stress and the amount of the ionic adsorption (desorption) at the double-layer. From a practical point of view, the determination of the strain-capacitance coefficient is helpful for characterizing and optimizing the performance of electrochemical actuators.

6.
Opt Express ; 24(20): 23280-23288, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828392

RESUMO

Surgeons treat cataracts by replacing the clouded lens with an intraocular lens (IOL), but patients are required to wear reading glasses for tasks requiring near vision. We suggest a new voltage-controlled accommodating IOL made of an ionic polymer metal composite (IPMC) actuator to change focus. An in vitro experiment was conducted where an actuator was placed inside the eye and moved with applied voltage. The lens attached to the actuator was deformed by its movement to change the patient's focus. The results showed that this system can accommodate a change of approximately 0.8 diopters under an applied voltage of ± 1.3 V.

7.
Langmuir ; 32(28): 7210-8, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27341344

RESUMO

UNLABELLED: New hybrid-type poly(3,4-ethylenedioxythiophene) (PEDOT) actuators produced by the film-casting method, in which both electrostatic double-layer (EDLC) and faradaic capacitors (FCs) occur simultaneously, have been developed. The electrochemical and electromechanical properties of PEDOT: poly(4-styrenesulfonate) (PSS), PEDOT:PSS/ionic liquid (IL), and PEDOT: PSS/single-walled carbon nanotubes (SWCNTs)/IL actuators are compared with those of a conventional poly(vinylidene fluoride)-co-hexafluoropropylene (PVdF(HFP))/SWCNT/IL actuator. It is found that the PEDOT: PSS/SWCNT/IL actuator provides a better actuation strain performance than a conventional (PVdF(HFP))/SWCNT/IL actuator, as its electrode is an electrochemical capacitor (EC) composed of an EDLC and FC. The PEDOT: PSS polymer helps produce a high specific capacitance, actuation strain, and maximum generated stress that surpass the performance of a conventional PVdF(HFP) actuator. The flexible and robust films created by the synergistic combination of PEDOT and SWCNT may therefore have significant potential as actuator materials for wearable energy-conversion devices. A double-layer charging kinetic model was successfully used to simulate the frequency dependence of the displacement responses of the PEDOT: PSS/IL and PEDOT: PSS/SWCNT/IL actuators.

8.
J Phys Chem B ; 120(12): 3215-25, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26977537

RESUMO

Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.

9.
Sci Rep ; 4: 6913, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372857

RESUMO

A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.


Assuntos
Órgãos Artificiais , Eletrólitos/química , Polímeros/química , Simulação de Ambiente Espacial/instrumentação , Radiação Cósmica , Planeta Terra , Técnicas Eletroquímicas , Eletrólitos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Meio Ambiente Extraterreno , Congelamento , Raios gama , Humanos , Teste de Materiais , Músculos/fisiologia , Polímeros/efeitos da radiação , Voo Espacial , Raios Ultravioleta , Raios X
10.
Langmuir ; 30(47): 14343-51, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25354668

RESUMO

The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable not only to EDLC-based actuator systems but also to the fabricated EDLC/FC system.


Assuntos
Carbono/química , Nanofibras/química , Níquel/química , Polímeros/química , Nanotecnologia , Nanotubos de Carbono/química
11.
Sci Rep ; 4: 6176, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146561

RESUMO

Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.


Assuntos
Órgãos Artificiais , Eletrodos , Íons , Metais , Músculos , Nanoestruturas/química , Polímeros/química , Fenômenos Biomecânicos , Propriedades de Superfície
12.
Langmuir ; 30(10): 2583-7, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24580143

RESUMO

Low-voltage stimuli-responsive actuators based on carbide-derived carbon (CDC) porous structures were demonstrated. Bending actuators showed a differential electromechanical response defined by the porosity of the CDC used in the electrode layer. Highly porous CDCs prepared from TiC (mainly microporous), B4C (micromesoporous), and Mo2C (mainly mesoporous) precursors were selected to demonstrate the influence of porosity parameters on the electromechanical performance of actuators. CDC-based bending-type actuators showed a porosity-driven displacement response over a frequency range of 200 to 0.005 Hz at an applied excitation voltage of ±2 V. The displacement response of the CDC actuators increased with an increasing number of mesopores in the electrode layer, and the generated strain of the bending actuators was proportional to the total porosity (micropores and mesopores) of the CDC. The modifiable electromechanical response that arises from the precise porosity control attained through tailoring the CDC architecture demonstrates that these actuators hold great promise for smart, low-voltage-driven actuation devices.


Assuntos
Carbono/química , Nanotecnologia/métodos , Eletrodos , Porosidade
13.
J Chem Phys ; 138(23): 234704, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802973

RESUMO

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this paper, we discuss the thermodynamics of a two component electrolyte in a porous electrode by using Monte Carlo simulation. We show that electrolyte ions are selectively adsorbed in porous electrodes and the relative concentration of the two components significantly changes as a function of the applied voltage and the pore size. This selectivity is observed not only for the counterions but also for the coions.


Assuntos
Eletrodos , Eletrólitos/química , Íons/química , Simulação por Computador , Método de Monte Carlo , Transição de Fase , Porosidade , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
14.
Sensors (Basel) ; 12(12): 16732-58, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23223076

RESUMO

 A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC) actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA) actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7.14 mm/s. Obstacle-avoidance and swimming experiments were also carried out to demonstrate its multi-functionality.


Assuntos
Biomimética , Extremidades/fisiologia , Polímeros/química , Robótica/instrumentação , Ligas/química , Animais , Desenho Assistido por Computador , Desenho de Equipamento , Movimento (Física)
15.
J Chem Phys ; 136(9): 094701, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22401462

RESUMO

The electrochemical thermodynamics of electrolytes in porous electrodes is qualitatively different from that in the bulk with planar electrodes when the pore size is comparable to the size of the electrolyte ions. In this study, the effect of the ion size asymmetry on the thermodynamics in porous electrodes was studied by using Monte Carlo simulation. We used the electrolyte ions for which the size of the cations and that of anions is different. Due to the asymmetry in the ion size, the ionic structure and the way the surface charge is distributed on the electrode surfaces were found to be qualitatively different in the cathode and in the anode. In particular, for some ranges of applied voltage, the distribution of the surface charge induced on the electrode planes shows inhomogeneity, which is not intrinsic to the structure of the porous electrodes. The transition from the homogeneous to the inhomogeneous distribution of surface charge on changing the voltage is a second order phase transition.

16.
Chemphyschem ; 13(8): 2108-14, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22447630

RESUMO

Single-walled carbon nanotubes (SWCNT) embedded in a non-electroactive polymer are electrochemically characterized. The increasing voltammetric maximums obtained with rising temperature or electrolyte concentration point to a chemical nature of the processes. The chemical kinetic control of the processes is corroborated by its empirical chemical kinetics: the initial reaction rates are obtained from the chronoamperometric responses to potential steps. The activation energy of the reaction includes information about the structural state of the SWCNT before the potential step. Under constant current the potential evolution (chronopotentiometric response) and consumed electrical energy at any time change as a function of (are sensors of) the experimental temperature or the electrolyte concentration. The reactive material, or any device based on this material, senses these working variables, and shows dual and simultaneous actuating-sensing properties.


Assuntos
Nanotubos de Carbono/química , Técnicas Eletroquímicas , Eletrólitos/química , Cinética , Oxirredução , Polímeros/química , Polivinil/química , Temperatura
17.
Chemistry ; 17(39): 10965-71, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21826748

RESUMO

Actuators with a high-speed response under a high-frequency (more than 100 Hz) applied square-wave voltage of ±2 V have been developed with an electrode composed of millimeter-long single-walled carbon nanotubes synthesized by the "supergrowth method" (SG-SWNTs) and ionic liquids (ILs). Detailed studies concerning induced electric current and transferred charge in the electrode as well as cyclic voltammetric studies of the electrode revealed that the high-speed response originates from the electric current generated by an oxidation/reduction (redox) reaction in addition to electric double-layer charging. The contribution of the redox reactions of SG-SWNTs to the actuation is sensitive to the presence of supporting polymers, the thickness of the electrolyte, and the amplitude of the applied voltage.


Assuntos
Técnicas Eletroquímicas/instrumentação , Líquidos Iônicos/química , Nanotubos de Carbono/química , Eletrodos , Eletrólitos/química , Desenho de Equipamento , Oxirredução
18.
J Chem Phys ; 134(15): 154710, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21513411

RESUMO

It is shown by Monte Carlo simulation that electrochemical thermodynamics of electrolytes in a porous electrode is qualitatively different from that in the bulk with a planar electrode. In particular, first order phase transitions occur in porous electrodes when the pore size is comparable to the ion size of the electrolytes: as the voltage is increased from zero, the surface charge density and the ion density in the porous electrodes discontinuously change at a specific voltage. The critical points for those phase transitions are identified.


Assuntos
Eletrólitos/química , Método de Monte Carlo , Transição de Fase , Eletricidade , Eletroquímica , Eletrodos , Porosidade
19.
J Phys Chem B ; 115(2): 205-16, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21171659

RESUMO

The redox switching dynamics of poly(3,4-ethylenedioxythiophene) (PEDOT) in an acetonitrile solution and a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmiTFSI), are investigated by means of potential step experiments. Redox switching can be viewed as a phase transition in which the nucleation and growth processes occur. We have developed a phenomenological model allowing the determination of the kinetic parameters. Two limiting cases are shown as follows: (i) a progressive and (ii) an instantaneous nucleation. In all cases, the growth process is described in terms of a self-exchange electron transfer reaction. We show that the mechanisms depend upon the medium. In acetonitrile, progressive nucleation and growth occur during oxidation (p-doping), whereas nucleation is instantaneous in the reduction of the PEDOT film. On the other hand, instantaneous nucleation and growth mechanisms are observed for both oxidation and reduction in EmiTFSI. The difference in the mechanisms results from the ionic exchange process associated with electron transfer and the initial structure of the film (open or compact). The influence of the applied potential on the dynamics is analyzed for both media.

20.
J Chem Phys ; 132(14): 144705, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20406008

RESUMO

Monte Carlo simulations in the constant voltage ensemble were performed for electrolytes in porous electrodes. It was found that the electrical and mechanical properties in porous electrodes dramatically change depending on the pore size and the dielectric constant of the medium. For a low dielectric constant of the medium, the capacitance of porous electrodes tends to increase as the pore size decreases and the pressure in the porous electrodes is positive or negative depending on the pore size. For a high dielectric constant of the medium, on the contrary, the capacitance tends to decrease as the pore size decreases and the pressure is positive for all the conditions studied here. Such pore size dependencies are explained in terms of the balance between the electrostatic interaction and the volume exclusion interaction in the porous electrode.


Assuntos
Eletrólitos/química , Método de Monte Carlo , Eletrodos , Modelos Químicos , Tamanho da Partícula , Porosidade , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...