Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635969

RESUMO

Glycogen synthase kinase 3 (GSK3) is an evolutionarily conserved serine/threonine protein kinase in eukaryotes. In plants, the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) functions as a central signaling node through which hormonal and environmental signals are integrated to regulate plant development and stress adaptation. BIN2 plays a major regulatory role in brassinosteroid (BR) signaling and is critical for phosphorylating/inactivating BRASSINAZOLE-RESISTANT 1 (BZR1), also known as BRZ-INSENSITIVE-LONG HYPOCOTYL 1 (BIL1), a master transcription factor of BR signaling, but the detailed regulatory mechanism of BIN2 action has not been fully revealed. In this study, we identified BIL8 as a positive regulator of BR signaling and plant growth in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses showed that BIL8 is downstream of the BR receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and promotes the dephosphorylation of BIL1/BZR1. BIL8 interacts with and inhibits the activity of the BIN2 kinase, leading to the accumulation of dephosphorylated BIL1/BZR1. BIL8 suppresses the cytoplasmic localization of BIL1/BZR1, which is induced via BIN2-mediated phosphorylation. Our study reveals a regulatory factor, BIL8, that positively regulates BR signaling by inhibiting BIN2 activity.

2.
Nat Commun ; 15(1): 370, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191552

RESUMO

Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.


Assuntos
Brassinosteroides , Cloroplastos , Espécies Reativas de Oxigênio , Reguladores de Crescimento de Plantas , Homeostase , Fatores de Transcrição/genética
3.
Plant Cell Physiol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242155

RESUMO

Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear. Here, we identify a novel Arabidopsis gene, BRZ INSENSITIVE LONG HYPOCOTYL 9 (BIL9), which promotes plant growth via BR signaling. Overexpression of BIL9 enhances drought and mannitol stress resistance and increases the expression of drought-responsive genes. BIL9 protein is induced by dehydration and interacts with the HD-Zip IV transcription factor HOMEODOMAIN GLABROUS 11 (HDG11), which is known to promote plant resistance to drought stress, in vitro and in vivo. BIL9 enhanced the transcriptional activity of HDG11 for drought-stress-resistant genes. BIL9 is a novel BR signaling factor that enhances both plant growth and plant drought resistance.

4.
Sci Rep ; 13(1): 17438, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838798

RESUMO

Climate changes and the rapid expanding human population have become critical concerns for global food security. One of the promising solutions is the employment of plant growth regulators (PGRs) for increasing crop yield and overcoming adverse growth conditions, such as desert climate. Recently, the apocarotenoid zaxinone and its two mimics (MiZax3 and MiZax5) have shown a promising growth-promoting activity in cereals and vegetable crops under greenhouse and field conditions. Herein, we further investigated the effect of MiZax3 and MiZax5, at different concentrations (5 and 10 µM in 2021; 2.5 and 5 µM in 2022), on the growth and yield of the two valuable vegetable crops, potato and strawberry, in the Kingdom of Saudi of Arabia. Application of both MiZax significantly increased plant agronomic traits, yield components and total yield, in five independent field trials from 2021 to 2022. Remarkably, the amount of applied MiZax was far less than humic acid, a widely applied commercial compound used here for comparison. Hence, our results indicate that MiZax are very promising PGRs that can be applied to promote the growth and yield of vegetable crops even under desert conditions and at relatively low concentrations.


Assuntos
Fragaria , Solanum tuberosum , Humanos , Clima Desértico , Produtos Agrícolas , Verduras , Reguladores de Crescimento de Plantas/farmacologia
5.
Plant Cell Rep ; 42(12): 1927-1936, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37803214

RESUMO

KEY MESSAGE: Increase of ENHANCER OF SHOOT REGENERATION 2 expression was consistent to treatment with kinetin, TIS108, and KK094 in adventitious shoot formation of ipecac. Unlike many plant species, ipecac (Carapichea ipecacuanha (Brot.) L. Andersson) can form adventitious shoots in tissue culture without cytokinin (CK) treatment. Strigolactone (SL) biosynthesis and signaling inhibitors stimulate adventitious shoot formation in ipecac, suggesting their potential use as novel growth regulators in plant tissue culture, but the molecular mechanism of their action is unclear. In this study, we compared the effects of SL-related inhibitors (TIS108 and KK094) and CKs (2iP, tZ, and kinetin) on adventitious shoot formation in ipecac. Exogenously applied SL-related inhibitors and CKs stimulated adventitious shoot formation. Combinations of SL-related inhibitors and kinetin also promoted adventitious shoot formation, but without additive effects. We also analyzed the expression of CK biosynthesis genes in ipecac. TIS108 increased the expression of the ipecac homolog of ISOPENTENYL TRANSFERASE 3 (CiIPT3) but decreased that of LONELY GUY 7 homolog (CiLOG7), presumably resulting in no change in 2iP-type CK levels. KK094 and kinetin increased CiLOG7 expression, elevating 2iP-type CK levels. Among pluripotency- and meristem-related genes, TIS108, KK094, and kinetin consistently increased the expression of ENHANCER OF SHOOT REGENERATION 2 homolog (CiESR2), which has a key role in shoot regeneration, in the internodal segment region that formed adventitious shoots. We propose that CiESR2 might be a key stimulator of adventitious shoot formation in ipecac.


Assuntos
Citocininas , Ipeca , Cinetina/farmacologia , Ipeca/farmacologia , Brotos de Planta , Citocininas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
6.
Biosci Biotechnol Biochem ; 88(1): 63-69, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791963

RESUMO

MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo
7.
Biomolecules ; 13(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37627271

RESUMO

The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.


Assuntos
Oryza , Pesquisa , Agricultura , Produtos Agrícolas , Horticultura
8.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569795

RESUMO

Ethylene is the only gaseous plant hormone that regulates several aspects of plant growth, from seedling morphogenesis to fruit ripening and organ senescence. Ethylene also stimulates the germination of Striga hermonthica, a root parasitic weed that severely damages crops in sub-Saharan Africa. Thus, ethylene response stimulants can be used as weed and crop control agents. Ethylene and ethephon, an ethylene-releasing compound, are currently used as ethylene response inducers. However, since ethylene is a gas, which limits its practical application, we targeted the development of a solid ethylene response inducer that could overcome this disadvantage. We performed chemical screening using Arabidopsis thaliana "triple response" as an indicator of ethylene response. After screening, we selected a compound with a thiourea skeleton and named it ZKT1. We then synthesized various derivatives of ZKT1 and evaluated their ethylene-like activities in Arabidopsis. Some derivatives showed considerably higher activity than ZKT1, and their activity was comparable to that of 1-aminocyclopropane-1-carboxylate. Mode of action analysis using chemical inhibitors and ethylene signaling mutants revealed that ZKT1 derivatives activate the ethylene signaling pathway through interactions with its upstream components. These thiourea derivatives can potentially be potent crop-controlling chemicals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Etilenos/farmacologia , Etilenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esqueleto/metabolismo
9.
Insects ; 14(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37504604

RESUMO

Gall-inducing insects often contain high concentrations of phytohormones, such as auxin and cytokinin, which are suggested to be involved in gall induction, but no conclusive evidence has yet been obtained. There are two possible approaches to investigating the importance of phytohormones in gall induction: demonstrating either that high phytohormone productivity can induce gall-inducing ability in non-gall-inducing insects or that the gall-inducing ability is inhibited when phytohormone productivity in galling insects is suppressed. In this study, we show that the overexpression of PonAAS2, which encodes an aromatic aldehyde synthase (AAS) responsible for the rate-limiting step in indoleacetic acid (IAA) biosynthesis in a galling sawfly (Pontania sp.) that contains high levels of endogenous IAA, conferred high IAA productivity on Caenorhabditis elegans, as the model system. This result strongly suggests that PonAAS2 can also confer high IAA productivity on low-IAA-producing insects. We also successfully identified an inhibitor of PonAAS2 in a chemical library. This highly selective inhibitor showed stronger inhibitory activity against AAS than against aromatic amino acid decarboxylase, which belongs to the same superfamily as AAS. We also confirm that this inhibitor clearly inhibited IAA productivity in the high-IAA-producing C. elegans engineered here.

10.
Nano Lett ; 23(11): 4732-4740, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272543

RESUMO

Sustainable and precise fortification practices are necessary to ensure food security for the increasing human population. Precision agriculture aims to minimize the use of fertilizers and pesticides by developing smart materials for real-life agricultural practices. Here, we show that biomimetic mineralization can be efficiently employed to encapsulate and controllably release plant biostimulants (MiZax-3) to improve the quality and yield of capsicum (Capsicum annum) crops in field experiments. ZIF-8 encapsulation of MiZax-3 (MiZIFs) could significantly enhance its stability up to around 679 times (6p value = 0.0072) at field conditions. Our results demonstrate that the coordinating Zn ions and the MiZax-3 play a vital role in improving Zn content in the produced fruits by 2-fold, which is the first report of this nature on Zn content in fruits. We envision this platform as a starting point to investigate other biocompatible coordination-based platforms for micronutrient delivery in precision agriculture.


Assuntos
Micronutrientes , Oligoelementos , Humanos , Biomimética , Agricultura/métodos , Produtos Agrícolas
11.
J Pestic Sci ; 48(2): 61-64, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37361485

RESUMO

Cyclopropene derivatives have been used as extremely reactive units in organic chemistry owing to their high ring-strain energy. They have become popular reagents both for bioorthogonal chemistry and for chemical biology because of their small size and ability to be genetically encoded. In this context, we conducted an exploratory study to identify the biologically active cyclopropenes that affect normal plant growth. We synthesized several cycloprop-2-ene-1-carboxylic acid derivatives and evaluated their effects on the early growth stage of Arabidopsis thaliana. Eventually, we identified the chemicals that affect apical hook development in Arabidopsis thaliana. Their mode of action is different from those of ethylene receptor inhibition and gibberellin biosynthesis inhibition. We expect that some of the chemicals reported here can be new tools in chemical biology to determine useful molecular targets for herbicides or plant growth regulators.

13.
J Agric Food Chem ; 71(20): 7891-7903, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37164944

RESUMO

Organophosphorus magnetic molecularly imprinted polymers (OMMIPs) with high adsorption capacities (13.5-83.8 mg g-1) and good applicability were developed for efficient extraction and pre-concentration of multiple organophosphorus pesticides (OPPs) from foodstuffs. The OMMIP-based sample pretreatment coupled with low-temperature plasma ambient ionization mass spectrometry achieved rapid screening for 90 kinds of pesticides at default maximum residue limits of National Standard (GB 2763-2021) in nine types of agro-products. The OMMIP-based liquid chromatography coupled with triple quadrupole mass spectroscopy assay demonstrated rapid magneto-actuated isolation, efficient removal of matrix interference, and reduced signal suppression, resulting in a short detection time (30 min), compliant recoveries (60.1-127.5%), low detection limits (0.0001-0.073 µg g-1), and simultaneous quantification of multi-pesticides. The yolk-shell-structured OMMIPs (Fe3O4@mTiO2@MIPs) demonstrated additional benefits of excellent ultraviolet light-driven catalytic degradation activity toward OPPs, making them eco-friendly for self-cleaning regeneration and reducing laboratory pesticide discharge. This work highlights the potential of OMMIPs for high-throughput and in situ pesticide monitoring in modern large-scale agricultural markets.


Assuntos
Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Compostos Organofosforados/análise , Resíduos de Praguicidas/análise , Ensaios de Triagem em Larga Escala , Raios Ultravioleta , Espectrometria de Massas , Cromatografia Líquida/métodos , Extração em Fase Sólida/métodos
14.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240381

RESUMO

Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid (SA)-mediated signaling pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in Arabidopsis. The soil drench application of CMPA enhanced a broad range of disease resistance against the bacterial pathogen Pseudomonas syringae and fungal pathogens Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis, whereas CMPA did not show antibacterial activity. Foliar spraying with CMPA induced the expression of SA-responsible genes such as PR1, PR2 and PR5. The effects of CMPA on resistance against the bacterial pathogen and the expression of PR genes were observed in the SA biosynthesis mutant, however, while they were not observed in the SA-receptor-deficient npr1 mutant. Thus, these findings indicate that CMPA induces SAR by triggering the downstream signaling of SA biosynthesis in the SA-mediated signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Resistência à Doença/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae/metabolismo , Transdução de Sinais , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Mutação
15.
ACS Omega ; 8(15): 13855-13862, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091382

RESUMO

Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.

16.
Biosci Biotechnol Biochem ; 87(6): 592-604, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36914217

RESUMO

Evaluation of individual roles of plant hormones in fruit development is difficult because various plant hormones function simultaneously. In this study, to analyze the effect of plant hormones on fruit maturation one by one, plant hormones were applied to auxin-induced parthenocarpic woodland strawberry (Fragaria vesca) fruits. As a result, auxin, gibberellin (GA), and jasmonate, but, not abscisic acid and ethylene increased the proportion of ultimately mature fruits. So far, to produce comparable fruit with pollinated fruit in size, auxin with GA treatment was required in woodland strawberry. Picrolam (Pic), the most potent auxin in inducing parthenocarpic fruit, induced fruit which is comparable in size with pollinated fruit without GA. The endogenous GA level and the result of the RNA interference analysis of the main GA biosynthetic gene suggest that a basal level of endogenous GA is essential for fruit development. The effect of other plant hormones was also discussed.


Assuntos
Fragaria , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Ácidos Indolacéticos/farmacologia , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
17.
Mol Plant ; 16(5): 802-803, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36998213
18.
J Pestic Sci ; 47(3): 101-110, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36479457

RESUMO

Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.

19.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454752

RESUMO

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Assuntos
Arabidopsis , Ligases , Arabidopsis/genética , Ácidos Indolacéticos/farmacologia , Fenômenos Químicos , Reguladores de Crescimento de Plantas/farmacologia , Testes Genéticos
20.
J Agric Food Chem ; 70(45): 14352-14366, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326728

RESUMO

Diuron [DU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea], a widely used herbicide for weed control, arouses ecological and health risks due to its environment persistence. Our findings revealed that DU at 0.125-2.0 mg L-1 caused oxidative damage to rice. RNA-sequencing profiles disclosed a globally genetic expression landscape of rice under DU treatment. DU mediated downregulated gene encoding photosynthesis and biosynthesis of protein, fatty acid, and carbohydrate. Conversely, it induced the upregulation of numerous genes involved in xenobiotic metabolism, detoxification, and anti-oxidation. Furthermore, 15 DU metabolites produced by metabolic genes were identified, 7 of which include two Phase I-based and 5 Phase II-based derivatives, were reported for the first time. The changes of resistance-related phytohormones, like JA, ABA, and SA, in terms of their contents and molecular-regulated signaling pathways positively responded to DU stress. Our work provides a molecular-scale perspective on the response of rice to DU toxicity and clarifies the biotransformation and degradation fate of DU in rice crops.


Assuntos
Herbicidas , Oryza , Diurona/metabolismo , Oryza/genética , Oryza/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Oxidativo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...