Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0295512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289974

RESUMO

Drought and heat are two stresses that often occur together and may pose significant risks to crops in future climates. However, the combined effects of these two stressors have received less attention than single-stressor investigations. This study used a rapid and straightforward phenotyping method to quantify the variation in 128 African eggplant genotype responses to drought, heat, and the combined effects of heat and drought at the seedling stage. The study found that the morphophysiological traits varied significantly among the 128 eggplants, highlighting variation in response to abiotic stresses. Broad-sense heritability was high (> 0.60) for chlorophyll content, plant biomass and performance index, electrolyte leakage, and total leaf area. Positive and significant relationships existed between biomass and photosynthetic parameters, but a negative association existed between electrolyte leakage and morpho-physiological traits. The plants underwent more significant stress when drought and heat stress were imposed concurrently than under single stresses, with the impact of drought on the plants being more detrimental than heat. There were antagonistic effects on the morphophysiology of the eggplants when heat and drought stress were applied together. Resilient genotypes such as RV100503, RV100501, JAMBA, LOC3, RV100164, RV100169, LOC 3, RV100483, GH5155, RV100430, GH1087, GH1087*, RV100388, RV100387, RV100391 maintained high relative water content, low electrolyte leakage, high Fv/Fm ratio and performance index, and increased biomass production under abiotic stress conditions. The antagonistic interactions between heat and drought observed here may be retained or enhanced during several stress combinations typical of plants' environments and must be factored into efforts to develop climate change-resilient crops. This paper demonstrates improvised climate chambers for high throughput, reliable, rapid, and cost-effective screening for heat and drought and combined stress tolerance in plants.


Assuntos
Solanum melongena , Solanum , Solanum melongena/genética , Solanum/genética , Secas , Resposta ao Choque Térmico , Eletrólitos
2.
Plant Direct ; 7(8): e521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37638231

RESUMO

Sorghum is an essential crop for resilient and adaptive responses to climate change. The root systems of crop plants significantly contribute to the tolerance of abiotic stresses. There is little information on sorghum genotypes' root systems and plasticity to external P supply. In this paper, we investigated the variations in root systems, as well as the responses, trait relationships, and plasticity of two sorghum genotypes (Naga Red and Naga White), popularly grown in Ghana, to five external P concentrations ([P]ext): 0, 100, 200, 300, and 400 mg P kg-1 soil. Sorghum plants were grown in greenhouse pots and harvested for root trait measurements at the five-leaf and growing point differentiation (GPD) developmental stages. The plants were responsive to [P]ext and formed rhizosheaths. The two genotypes showed similar characteristics for most of the traits measured but differed significantly in total and lateral root lengths in favor of the red genotype. For example, at the five-leaf growth stage, the lateral root length of the red and white genotypes was 22.8 and 16.2 cm, respectively, but 124 and 88.9 cm, at the GPD stage. The responses and plasticity of the root system traits, including rhizosheath, to [P]ext were more prominent, positive, and linear at the five-leaf stage than at the GPD growth stage. At the five-leaf growth stage, total root length increased by about 2.5-fold with increasing [P]ext compared to the unamended soil. At the GPD stage, however, total root length decreased by about 1.83-fold as [P]ext increased compared to the unamended soil. Specific rhizosheath weight correlated with RHD, albeit weakly, and together explained up to 59% of the variation in tissue P. Root hair density was more responsive to P supply than root hair length and showed a similar total and lateral root length pattern. Most desirable responses to P occurred at a rate of 200-300 mg P kg-1 soil. It is concluded that sorghum would form rhizosheath, and [P]ext could be critical for the early vigorous growth of sorghum's responsive root and shoot traits. Beyond the early days of development, additional P application might be necessary to sustain the responses and plasticity observed during the early growth period, but this requires further investigation, potentially under field conditions.

3.
Plant Phenomics ; 2022: 0002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37266139

RESUMO

Due to roots' physical and physiological roles in crop productivity, interest in root system architecture (RSA) and plasticity in responses to abiotic stresses is growing. Sorghum is significant for the food security of millions of people. Phosphorus deficiency is an important limitation of sorghum productivity. There is little information on the RSA-based responses of sorghum to variations in external P supply ([P]ext). This study evaluated the phenotypic plasticity and RSA responses to a range of [P]ext in 2 sorghum genotypes. The results showed that both genotypes responded to [P]ext but with significant variations in about 80% of the RSA traits analyzed. Aboveground biomass and most RSA traits increased with increasing [P]ext. Plasticity was both genotype- and trait-dependent. For most RSA traits, the white sorghum genotype showed significantly higher plasticity than the red genotype, with the former having about 28.4% higher total plasticity than the former. RSA traits, such as convex area, surface area, total root length, and length diameter ranges, showed sizeable genetic variability. Root biomass had a high degree of plasticity, but root number and angle traits were the leading contributors to variation. The results suggested 2 root trait spectra: root exploration and developmental spectrum, and there was an indication of potential trade-offs among groups of root traits. It is concluded that RSA traits in sorghum contribute to variability and plasticity in response to [P]ext. Given that there might be trade-offs among sorghum root traits, it would be instructive to determine the fundamental constraints underlying these trade-offs.

4.
PLoS One ; 15(5): e0232595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374747

RESUMO

Cassava is the 6th most important source of dietary energy in the world but its root system architecture (RSA) had seldom been quantified. Ability to select superior genotypes at juvenile stages can significantly reduce the cost and time for breeding to bridge the large yield gap. This study adopted a simple approach to phenotyping RSA traits of juvenile and mature cassava plants to identify genotypic differences and the relationships between juvenile traits and harvest index of mature plants. Root classes were categorised and root and shoot traits of eight (8) juvenile pot-grown cassava genotypes, were measured at 30 and 45 days after planting (DAP). The same or related traits were measured at 7 months after planting of the same genotypes grown in the field while yield and yield components were measured in 12-months old field-grown plants. The field experiment was done in 2017 and repeated in 2018. Differences between genotypes for the measured traits were explored using analysis of variance (ANOVA) while traits in juvenile plants were correlated or regressed onto traits measured in 7- and 12-months old plants. The results show significant genotypic variations for most of the traits measured in both juvenile and 7-months old plants. In the 12-months old plants, differences between genotypes were consistent for both 2017 and 2018. Broad-sense heritability was highest for the number of commercial roots (0.87) and shoot fresh weight (0.78) and intermediate for the total number of roots (0.60), harvest index (0.58), fresh weight of roots (0.45). For all the sampling time points or growth stages, there were greater correlations between traits measured at a particular growth stage than between the same traits at different growth stages. However, some juvenile-mature plant trait relationships were significant, positive and consistent for both 2017 and 2018. For example, total root length and the total number of roots in 30 DAP, and branching density of upper nodal roots in 45 DAP, positively correlated with harvest index of 12-months old plants in both 2017 and 2018. Similarly, the diameter of nodal roots, for example, had a negative, significant correlation with fresh shoot biomass of mature plants in both 2017 and 2018. Regression of traits measured in 30 DAP explained up to 22% and 36% of the variation in HI of mature plants in 2017 and 2018, respectively. It is concluded that the simple, rapid, inexpensive phenotyping approach adopted in this study is robust for identifying genotypic variations in juvenile cassava using root system traits. Also, the results provide seminal evidence for the existence of useful relationships between traits of juvenile and mature cassava plants that can be explored to predict yield and yield components.


Assuntos
Manihot/crescimento & desenvolvimento , Melhoramento Vegetal , Variação Genética , Manihot/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas
5.
Heliyon ; 4(8): e00750, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30167498

RESUMO

Agronomic biofortification is the deliberate use of mineral fertilizers to increase the concentration of a target mineral in edible portions of crops to increase dietary intake of the target mineral. Globally, increased dietary intake of potassium (K) is becoming a part of the strategy to address hidden hunger and related non-communicable diseases such as hypertension and cardiac disorders. This study aimed at demonstrating the efficacy of increasing the concentration of K in the edible portions of three commonly consumed but underutilized solanacea vegetables (Solanum aethiopicum, S. macrocarpon and S. torvum) in Ghana. The effects of different types and rates of K fertilizer application on the leaf- and fruit-K contents of the vegetables, as well as the K loss between the raw and cooked fruits were investigated. Five levels of each of three types of K fertilizer (liquid drench of potassium chloride, granular Muriate of potash and Sulphate of potash) were applied to each of the three field-grown vegetables. Yield data were collected and the fruits and leaves were analysed for the content of K, N, P, Ca, Fe, Zn and Cu. The results showed the rate of fertilizer application had significant effect on the yields of S. aethiopicum and macrocarpon but the yield of S. torvum was significantly affected by type, rate and interactive effect of type and rate of fertilizer application. Fruit K concentrations were greatest for S. aethiopicum (2130 mg K kg-1 DW) and S. torvum (1883 mg K kg-1 DW) with liquid KCl but with Sulphate of Potash for S. macrocarpon (1801 mg K kg-1 DW). There were higher K concentrations in leaves than in fruits of all the vegetables. Household cooking of the fruits resulted in the retention of over 70% of the K content in the raw fruits. Potassium fertilization increased the Ca, Fe, and Zn contents of S. aethiopicum and S. torvum. It is concluded that agronomic biofortification may be a useful strategy to increase K intakes and other important elements (e.g. Fe and Zn) in the vegetables studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA