Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Arch Gynecol Obstet ; 309(1): 9-15, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907900

RESUMO

INTRODUCTION: Management of cystic fibrosis has recently stepped forward with the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators, although data on potential adverse effects are lacking for many categories of patients, such as pregnant women. METHODS: We report one of the first reports on the outcome of pregnancy in a woman treated with Elexacaftor/Tezacaftor/Ivacaftor during the second and third trimester of pregnancy, showing a significant improvement of respiratory status, compared with the first trimester when the medication was discontinued due to unknown and, therefore, potential teratogenic effects. Also, we performed the review of the existing literature on the topic. RESULTS: The course of pregnancy was uneventful, with reference to major obstetric complications, and the patient delivered a healthy neonate. These results were similar to those coming from other short series of pregnant women affected by cystic fibrosis and treated with CFTR modulators during pregnancy. CONCLUSIONS: Thus, despite the lack of evidence on the topic, the use of Elexacaftor/Tezacaftor/Ivacaftor in pregnancy seems to be apparently not associated with major adverse events, thus opening optimistic scenarios in terms of management of these patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Gravidez , Recém-Nascido , Humanos , Feminino , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos adversos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/induzido quimicamente , Mutação , Método Duplo-Cego
2.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36455959

RESUMO

BACKGROUND: Cystic fibrosis (CF), which is caused by mutations in the CF transmembrane conductance regulator (CFTR), is characterised by chronic bacterial lung infection and inflammation. In CF, monocytes and monocyte-derived macrophages have been shown to display defective phagocytosis and antimicrobial activity against relevant lung pathogens, including Pseudomonas aeruginosa. Thus, we addressed the effect of CFTR triple modulator therapy (elexacaftor/tezacaftor/ivacaftor (ETI)) on the activity of CF monocytes against P. aeruginosa. METHODS: Monocytes from people with CF (PWCF) before and after 1 and 6 months of ETI therapy were isolated from blood and infected with P. aeruginosa to assess phagocytic activity and intracellular bacterial killing. The oxidative burst and interleukin-6 secretion were also determined. Monocytes from healthy controls were also included. RESULTS: Longitudinal analysis of the clinical parameters confirmed an improvement of lung function and lung microbiology by ETI. Both the phagocytic and microbicidal deficiencies of CF monocytes also improved significantly, although not completely. Furthermore, we measured an exuberant oxidative burst in CF monocytes before therapy, which was reduced considerably by ETI. This led to an improvement of reactive oxygen species-dependent bactericidal activity. Inflammatory response to bacterial stimuli was also lowered compared with pre-therapy. CONCLUSIONS: PWCF on ETI therapy, in a real-life setting, in addition to clinical recovery, showed significant improvement in monocyte activity against P. aeruginosa, which may have contributed to the overall effect of ETI on pulmonary disease. This also suggests that CF monocyte dysfunctions may be specifically targeted to ameliorate lung function in CF.


Assuntos
Anti-Infecciosos , Fibrose Cística , Humanos , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Monócitos , Anti-Infecciosos/uso terapêutico , Mutação
3.
Sci Rep ; 12(1): 21104, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473894

RESUMO

Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.


Assuntos
Acne Vulgar , Humanos , Adolescente
4.
Sci Rep ; 12(1): 10404, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729352

RESUMO

In Gram-negative pathogens, the stringent response regulator DksA controls the expression of hundreds of genes, including virulence-related genes. Interestingly, Pseudomonas aeruginosa has two functional DksA paralogs: DksA1 is constitutively expressed and has a zinc-finger motif, while DksA2 is expressed only under zinc starvation conditions and does not contain zinc. DksA1 stimulates the production of virulence factors in vitro and is required for full pathogenicity in vivo. DksA2 can replace these DksA1 functions. Here, the role of dksA paralogs in P. aeruginosa tolerance to H2O2-induced oxidative stress has been investigated. The P. aeruginosa dksA1 dksA2 mutant showed impaired H2O2 tolerance in planktonic and biofilm-growing cultures and increased susceptibility to macrophages-mediated killing compared to the wild type. Complementation with either dksA1 or dksA2 genes restored the wild type phenotypes. The DksA-dependent tolerance to oxidative stress involves, at least in part, the positive transcriptional control of both katA and katE catalase-encoding genes. These data support the hypothesis that DksA1 and DksA2 are eco-paralogs with indistinguishable function but optimal activity under different environmental conditions, and highlight their mutual contribution to P. aeruginosa virulence.


Assuntos
Peróxido de Hidrogênio , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Macrófagos/metabolismo , Pseudomonas aeruginosa/fisiologia , Zinco/metabolismo
5.
Cell Mol Life Sci ; 79(5): 257, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462606

RESUMO

The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients' treatment by epigenetic targeting.


Assuntos
Fibrose Cística , Curcumina/farmacologia , Curcumina/uso terapêutico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo/genética , Epigênese Genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia
7.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916525

RESUMO

The interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed. The mRNA expression of CFTR and ENaC subunits α, ß and γ (respectively SCNN1A, SCNN1B, and SCNN1G genes) was studied by real time PCR. DNA methylation of 5'-flanking region of SCNN1A, SCNN1B, and SCNN1G genes was studied by HpaII/PCR. The levels of expression and DNA methylation of ENaC genes in the different cell lines, brushing samples, and leukocytes were very variable. The DNA regions studied of each ENaC gene showed different methylation patterns. A general inverse correlation between expression and DNA methylation was evidenced. Leukocytes showed very low expression of all the 3 ENaC genes corresponding to a DNA methylated pattern. The SCNN1A gene resulted to be the most expressed in some cell lines that, accordingly, showed a completely demethylated pattern. Coherently, a heavy and moderate methylated pattern of, respectively, SCNN1B and SCNN1G genes corresponded to low levels of expression. As exceptions, we found that dexamethasone treatment appeared to stimulate the expression of all the 3 ENaC genes, without an evident modulation of the DNA methylation pattern, and that in nasal brushing a considerable expression of all the 3 ENaC genes were found despite an apparent methylated pattern. At least part of the expression modulation of ENaC genes seems to depend on the DNA methylation patterns of specific DNA regions. This points to epigenetics as a controlling mechanism of ENaC function and as a possible therapeutic approach for CF.


Assuntos
Metilação de DNA , Canais Epiteliais de Sódio/biossíntese , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Humanos
8.
Front Cell Infect Microbiol ; 10: 561741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363047

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40-96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08-24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13-19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39-18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392-18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Pessoa de Meia-Idade
9.
Nutrients ; 12(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977543

RESUMO

In recent years, extracellular vesicles (EVs), cell-derived micro and nano-sized structures enclosed in a double-layer membrane, have been in the spotlight for their high potential in diagnostic and therapeutic applications. Indeed, they act as signal mediators between cells and/or tissues through different mechanisms involving their complex cargo and exert a number of biological effects depending upon EVs subtype and cell source. Being produced by almost all cell types, they are found in every biological fluid including milk. Milk EVs (MEVs) can enter the intestinal cells by endocytosis and protect their labile cargos against harsh conditions in the intestinal tract. In this study, we performed a metabolomic analysis of MEVs, from three different species (i.e., bovine, goat and donkey) by mass spectroscopy (MS) coupled with Ultrahigh-performance liquid chromatography (UHPLC). Metabolites, both common or specific of a species, were identified and enriched metabolic pathways were investigated, with the final aim to evaluate their anti-inflammatory and immunomodulatory properties in view of prospective applications as a nutraceutical in inflammatory conditions. In particular, metabolites transported by MEVs are involved in common pathways among the three species. These metabolites, such as arginine, asparagine, glutathione and lysine, show immunomodulating effects. Moreover, MEVs in goat milk showed a greater number of enriched metabolic pathways as compared to the other kinds of milk.


Assuntos
Anti-Inflamatórios/análise , Vesículas Extracelulares/química , Metabolômica/métodos , Leite/química , Animais , Bovinos , Cromatografia Líquida/métodos , Equidae , Feminino , Cabras , Humanos , Estudos Prospectivos
10.
J Org Chem ; 85(16): 10891-10901, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806095

RESUMO

Colistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural ent-beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant Pseudomonas aeruginosa strains including clinical isolates to exploit the versatility of the diterpene scaffold. Microbiological assays coupled with molecular modeling indicated that for a more efficient colistin adjuvant activity, likely resulting from inhibition of the ArnT activity by the selected compounds and therefore from their interaction with the catalytic site of ArnT, an ent-beyerane scaffold is required along with an oxalate-like group at C-18/C-19 or a sugar residue at C-19 to resemble L-Ara4N. The ent-beyerane skeleton is identified for the first time as a privileged scaffold for further cost-effective development of valuable colistin resistance inhibitors.


Assuntos
Colistina , Diterpenos , Antibacterianos/farmacologia , Proteínas de Bactérias , Diterpenos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
11.
J Antimicrob Chemother ; 75(9): 2564-2572, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32514531

RESUMO

BACKGROUND: Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa. OBJECTIVES: Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants. METHODS: The available ArnT crystal structure was used for a docking-based virtual screening of an in-house library of natural products. The resulting putative ArnT inhibitors were tested in growth inhibition assays using a reference colistin-resistant P. aeruginosa strain. The most promising compound was further characterized for its range of activity, specificity and cytotoxicity. Additionally, the effect of the compound on lipid A aminoarabinosylation was verified by MS analyses of lipid A. RESULTS: A putative ArnT inhibitor (BBN149) was discovered by molecular docking and demonstrated to specifically potentiate colistin activity in colistin-resistant P. aeruginosa isolates, without relevant effect on colistin-susceptible strains. BBN149 also showed adjuvant activity against colistin-resistant Klebsiella pneumoniae and low toxicity to bronchial epithelial cells. Lipid A aminoarabinosylation was reduced in BBN149-treated cells, although only partially. CONCLUSIONS: This study demonstrates that in silico screening targeting ArnT can successfully identify inhibitors of colistin resistance and provides a promising lead compound for the development of colistin adjuvants for the treatment of MDR bacterial infections.


Assuntos
Colistina , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Translocador Nuclear Receptor Aril Hidrocarboneto , Colistina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa
12.
ACS Med Chem Lett ; 11(5): 760-765, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435382

RESUMO

Novel diterpenoids were isolated from the extracts of Fabiana densa var. ramulosa and found to display a selective activity against Gram-positive bacterial strains with negligible cytotoxicity toward human keratinocytes. This study highlighted the role played by the acidic group at C18 of the tetracyclic ent-beyerene scaffold for antibacterial effects and how the length and flexibility of the alkyl chain between the two carbonyl groups are crucial factors to increase the antimicrobial activity of the molecules, supporting the development of natural products from F. densa and their derivatives for treatment of microbial infections.

13.
Front Microbiol ; 11: 326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210934

RESUMO

Reactive oxygen species (ROS) are small oxygen-derived molecules that are used to control infections by phagocytic cells. In macrophages, the oxidative burst produced by the NOX2 NADPH-oxidase is essential to eradicate engulfed pathogens by both oxidative and non-oxidative killing. Indeed, while the superoxide anion ( O2- ) produced by NOX2, and the other ROS derived from its transformation, can directly target pathogens, ROS also contribute to activation of non-oxidative microbicidal effectors. The response of pathogens to the phagocytic oxidative burst includes the expression of different enzymes that target ROS to reduce their toxicity. Superoxide dismutases (SODs) are the primary scavengers of O2- , which is transformed into H2O2. In the Gram-negative Salmonella typhimurium, periplasmic SODCI has a major role in bacterial resistance to NOX-mediated oxidative stress. In Pseudomonas aeruginosa, the two periplasmic SODs, SODB, and SODM, appear to contribute to bacterial virulence in small-animal models. Furthermore, NOX2 oxidative stress is essential to restrict P. aeruginosa survival in macrophages early after infection. Here, we focused on the role of P. aeruginosa SODs in the counteracting of the lethal effects of the macrophage oxidative burst. Through this study of the survival of sod mutants in macrophages and the measurement of ROS in infected macrophages, we have identified a dual, antagonistic, role for SODB in P. aeruginosa survival. Indeed, the survival of the sodB mutants, but not of the sodM mutants, was greater than that of the wild-type (WT) bacteria early after infection, and sodB-infected macrophages showed higher levels of O2- and lower levels of H2O2. This suggests that SODB contributes to the production of lethal doses of H2O2 within the phagosome. However, later on following infection, the sodB mutants survived less that the WT bacteria, which highlights the pro-survival role of SODB. We have explained this defensive role through an investigation of the activation of autophagy, which was greater in the sodB-infected macrophages.

14.
Sci Rep ; 9(1): 16259, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700158

RESUMO

Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.


Assuntos
Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Interleucina-6/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , Transcriptoma
15.
Microorganisms ; 7(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470558

RESUMO

Biofilm is the dominant mode of growth of the skin microbiota, which promotes adhesion and persistence in the cutaneous microenvironment, thus contributing to the epidermal barrier function and local immune modulation. In turn, the local immune microenvironment plays a part in shaping the skin microbiota composition. Atopic dermatitis (AD) is an immune disorder characterized by a marked dysbiosis, with a sharp decline of microbial diversity. During AD flares biofilm-growing Staphylococcus aureus emerges as the major colonizer in the skin lesions, in strict association with disease severity. The chronic production of inflammatory cytokines in the skin of AD individuals concurs at supporting S. aureus biofilm overgrowth at the expense of other microbial commensals, subverting the composition of the healthy skin microbiome. The close relationship between the host and microbial biofilm resident in the skin has profound implications on human health, making skin microbiota an attractive target for the therapeutic management of different skin disorders.

16.
Int J Pharm ; 563: 347-357, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935918

RESUMO

Sustained pulmonary delivery of tobramycin from microparticles composed of drug/polymer nanocomplexes offers several advantages against traditional delivery methods. Namely, in patients with cystic fibrosis, microparticle delivery can protect the tobramycin being delivered from strong mucoadhesive interactions, thus avoiding effects on its diffusion toward the infection site. Polymeric ion-pair complexes were obtained starting from two synthetic polyanions, through impregnation of their solid dissociated forms with tobramycin in aqueous solution. The structure of these polymeric systems was characterized, and their activities were examined against various biofilm-forming Pseudomonas aeruginosa. Once dried, the nanocomplexes can change their aggregation state, to form microparticle-based aggregates with a spherical shape and a micrometer size. In aqueous dispersions, the ion-pair complexes produced had nanometric size, negative ζ potential, and high biocompatibility toward human bronchial epithelium cells. The antibiofilm activity of these formulations was more efficient than for free tobramycin, with the antibiofilm activity against P. aeruginosa mucoid and nonmucoid end-stage strains isolated from cystic fibrosis lungs being of particular relevance.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina/administração & dosagem , Biofilmes , Linhagem Celular , Humanos , Muco/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
17.
Int J Mol Sci ; 19(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673202

RESUMO

Improving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability. In the present study we tested the idea that addition of an S/MAR element to a CFTR (cystic fibrosis transmembrane conductance regulator) expression vector, may allow the establishment of a CFTR episome in bronchial epithelial cells. Starting from the observation that the S/MAR vector pEPI-EGFP (enhanced green fluorescence protein) is maintained as an episome in human bronchial epithelial cells, we assembled the CFTR vector pBQ-S/MAR. This vector, transfected in bronchial epithelial cells with mutated CFTR, supported long term wt CFTR expression and activity, which in turn positively impacted on the assembly of tight junctions in polarized epithelial cells. Additionally, the recovery of intact pBQ-S/MAR, but not the parental vector lacking the S/MAR element, from transfected cells after extensive proliferation, strongly suggested that pBQ-S/MAR was established as an episome. These results add a new element, the S/MAR, that can be considered to improve the persistence and safety of gene therapy vectors for cystic fibrosis pulmonary disease.


Assuntos
Brônquios/citologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vetores Genéticos/genética , Plasmídeos/genética , Mucosa Respiratória/citologia , Brônquios/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/terapia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Terapia Genética/métodos , Humanos , Mucosa Respiratória/metabolismo , Transfecção/métodos
18.
Magn Reson Med ; 79(4): 2323-2331, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28833401

RESUMO

PURPOSE: Development of a reliable, simple method to monitor lung condition in cystic fibrosis (CF) patients. Lung functionality assessment in CF patients is relevant, as most of them still die of respiratory failure. In lung mucus (sputum) of CF patients, components such as proteins, biopolymers, DNA, bacteria, and mucin are pathologically increased. As lung functionality is related to the amount of the pathological components in the sputum, their determination can help clinicians in monitoring lung condition and planning therapy. METHODS: Low-field NMR was used to evaluate the variation of the relaxation time (T2m ) of the water hydrogens present in CF sputum in relation to the amounts of the pathological components. Low-field NMR was tested in artificial samples (mucin or alginates), then in conditional sputum (saliva from healthy volunteers, added by different amounts of the pathological components), and finally in 12 patients' sputums, in which T2m was correlated to a commonly used lung monitoring test (i.e., forced expiratory volume in the first second). RESULTS: T2m significantly (P < 0.05) differed between samples with and without pathological components and between healthy and CF patients (P < 0.05), in which T2m correlated (r = 0.87) with FEV1 . CONCLUSIONS: The presented method can potentially become a valuable lung-monitoring tool in CF patients. Magn Reson Med 79:2323-2331, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Fibrose Cística/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Escarro/química , Adulto , Biopolímeros/química , DNA/análise , Feminino , Humanos , Pulmão/microbiologia , Masculino , Infecções por Pseudomonas/diagnóstico por imagem , Pseudomonas aeruginosa , Escarro/microbiologia , Água , Adulto Jovem
19.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135920

RESUMO

Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF) patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.


Assuntos
Burkholderia cenocepacia/fisiologia , Microbiologia Ambiental , Aptidão Genética , Infecções Respiratórias/microbiologia , Adaptação Fisiológica , Animais , Carga Bacteriana , Biofilmes , Burkholderia cenocepacia/patogenicidade , Doença Crônica , Células Clonais , Contagem de Colônia Microbiana , Estimativa de Kaplan-Meier , Larva/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Inoculações Seriadas , Virulência
20.
Front Microbiol ; 7: 1429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708625

RESUMO

Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...