Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
MAbs ; 16(1): 2313737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332713

RESUMO

Therapeutic mAbs show a specific "charge fingerprint" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of "horizontal standards" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.


Assuntos
Anticorpos Monoclonais , Eletroforese Capilar , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/análise , Focalização Isoelétrica/métodos , Eletroforese Capilar/métodos , Ponto Isoelétrico , Controle de Qualidade
2.
Int Rev Immunol ; 41(4): 393-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34494500

RESUMO

Many recent studies have reported the onset of a robust antibody response to SARS-CoV-2 infection and highlighted produced antibodies' specific qualitative and quantitative aspects, relevant for developing antibody-based diagnostic and therapeutic options. In this review, firstly we will report main information acquired so far regarding the humoral response to COVID-19; we will concentrate, in particular, upon the observed levels and the kinetics, the specificity spectrum and the neutralizing potential of antibodies produced in infected patients. We will then discuss the implication of humoral response's characteristics in the development and correct use of serologic tests, as well as the efficacy and safety of convalescent plasma therapy and of neutralizing monoclonal antibodies for treating infected patients and preventing new infections. An update of the list of newly isolated specific neutralizing antibodies and suggestions for vaccine evaluation and development will be also provided.


Assuntos
COVID-19 , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Formação de Anticorpos , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Imunização Passiva , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Soroterapia para COVID-19
3.
Hum Antibodies ; 29(1): 63-84, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33164927

RESUMO

BACKGROUND: The NCAM or CD56 antigen is a cell surface glycoprotein belonging to the immunoglobulin super-family involved in cell-cell and cell-matrix adhesion. NCAM is also over-expressed in many tumour types and is considered a tumour associated antigen, even if its role and biological mechanisms implicated in tumour progression and metastasis have not yet to be elucidated. In particular, it is quite well documented the role of the interaction between the NCAM protein and the fibroblast growth factor receptor-1 in metastasis and invasion, especially in the ovarian cancer progression. OBJECTIVE: Here we describe the isolation and preliminary characterization of a novel human anti-NCAM single chain Fragment variable antibody able to specifically bind NCAM-expressing cells, including epithelial ovarian cancer cells. METHODS: The antibody was isolate by phage display selection and was characterized by ELISA, FACS analysis and SPR experiments. Interference in EOC migration was analyzed by scratch test. RESULTS: It binds a partially linear epitope lying in the membrane proximal region of two fibronectin-like domains with a dissociation constant of 3.43 × 10-8 M. Interestingly, it was shown to interfere with the NCAM-FGFR1 binding and to partially decrease migration of EOC cells. CONCLUSIONS: According to our knowledge, this is the first completely human antibody able to interfere with this newly individuated cancer mechanism.


Assuntos
Bacteriófagos , Transdução de Sinais , Bacteriófagos/metabolismo , Humanos , Imunoglobulinas , Moléculas de Adesão de Célula Nervosa/metabolismo , Ligação Proteica
4.
Int J Nanomedicine ; 14: 8755-8768, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31806970

RESUMO

PURPOSE: Single-chain variable fragments (scFvs) are one of the smallest antigen-binding units having the invaluable advantage to be expressed by a unique short open reading frame (ORF). Despite their reduced size, spontaneous cell entry of scFvs remains inefficient, hence precluding the possibility to target intracellular antigens. Here, we describe an original strategy to deliver scFvs inside target cells through engineered extracellular vesicles (EVs). This approach relies on the properties of a Human Immunodeficiency Virus (HIV)-1 Nef mutant protein referred to as Nefmut. It is a previously characterized Nef allele lacking basically all functions of wt Nef, yet strongly accumulating in the EV lumen also when fused at its C-terminus with a foreign protein. To gain the proof-of-principle for the efficacy of the proposed strategy, the tumor-promoting Human Papilloma Virus (HPV)16-E7 protein was considered as a scFv-specific intracellular target. The oncogenic effect of HPV16-E7 relies on its binding to the tumor suppressor pRb protein leading to a dysregulated cell duplication. Interfering with this interaction means impairing the HPV16-E7-induced cell proliferation. METHODS: The Nefmut gene was fused in frame at its 3'-terminus with the ORF coding for a previously characterized anti-HPV16-E7 scFv. Interaction between the Nefmut-fused anti-HPV16-E7 scFv and the HPV16-E7 protein was tested by both confocal microscope and co-immunoprecipitation analyses on co-transfected cells. The in cis anti-proliferative effect of the Nefmut/anti-HPV16-E7 scFv was assayed by transfecting HPV16-infected cells. The anti-proliferative effect of EVs engineered with Nefmut/anti-HPV16-E7 scFv on HPV16-E7-expressing cells was evaluated in two ways: i) through challenge with purified EVs by a Real-Time Cell Analysis system and ii) in transwell co-cultures by an MTS-based assay. RESULTS: The Nefmut/anti-HPV16-E7 scFv chimeric product is efficiently uploaded in EVs, binds HPV16-E7, and inhibits the proliferation of HPV16-E7-expressing cells. Most important, challenge with cell-free EVs incorporating the Nefmut/anti-HPV16-E7 scFv led to the inhibition of proliferation of HPV16-E7-expressing cells. The proliferation of these cells was hindered also when they were co-cultured in transwells with cells producing EVs uploading Nefmut/anti-HPV16-E7 scFv. CONCLUSION: Our data represent the proof-of-concept for the possibility to target intracellular antigens through EV-mediated delivery of scFvs. This finding could be relevant to design novel methods of intracellular therapeutic interventions.


Assuntos
Vesículas Extracelulares/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Anticorpos de Cadeia Única/administração & dosagem , Efeito Espectador , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Exossomos/imunologia , Exossomos/metabolismo , Vesículas Extracelulares/genética , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/patogenicidade , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/prevenção & controle , Anticorpos de Cadeia Única/genética , Transfecção , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
5.
BMC Biotechnol ; 19(1): 67, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623599

RESUMO

BACKGROUND: Lymphocyte-activation gene (LAG)3 is a 498 aa transmembrane type I protein acting as an immune inhibitory receptor. It is expressed on activated lymphocytes, natural killer cells and plasmacytoid dendritic cells. In activated lymphocytes, LAG3 expression is involved in negative control of cell activation/proliferation to ensure modulation and control of immune responses. In view of its deregulated expression in tumor-infiltrating lymphocytes, LAG3, together with the additional immune checkpoint inhibitors CTLA4 and PD1, is considered a major target in order to reverse the immunosuppression typically mounting in oncologic diseases. Since many patients still fail to respond to current immune checkpoints-based therapies, the identification of new effective immune inhibitors is a priority in the ongoing fight against cancer. RESULTS: We identified a novel human single-chain variable fragment (scFv) Ab against a conformational epitope of LAG3 by in vitro phage display technology using the recombinant antigen as a bait. This scFv (referred to as F7) was characterized in terms of binding specificity to both recombinant antigen and human LAG3-expressing cells. It was then rebuilt into an IgG format pre-optimized for clinical usage, and the resulting bivalent construct was shown to preserve its ability to bind LAG3 on human cells. Next, we analyzed the activity of the anti-LAG3 scFvF7 using two different antigen-specific CD8+ T lymphocyte clones as target cells. We proved that the reconstituted anti-LAG3 F7 Ab efficiently binds the cell membrane of both cell clones after peptide-activation. Still more significantly, we observed a striking increase in the peptide-dependent cell activation upon Ab treatment as measured in terms of IFN-γ release by both ELISA and ELISPOT assays. CONCLUSIONS: Overall, the biotechnological strategy described herein represents a guiding development model for the search of novel useful immune checkpoint inhibitors. In addition, our functional data propose a novel candidate reagent for consideration as a cancer treatment.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Glycine max/metabolismo , Biblioteca de Peptídeos , Plantas Geneticamente Modificadas/metabolismo , Bacillus thuringiensis/metabolismo , Humanos , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Glycine max/genética
6.
BMC Biotechnol ; 19(1): 64, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488108

RESUMO

BACKGROUND: Ebola hemorrhagic fever is caused by the Ebola filovirus (EBOV), which is one of the most aggressive infectious agents known worldwide. The EBOV pathogenesis starts with uncontrolled viral replication and subversion of both the innate and adaptive host immune response. The multifunctional viral VP35 protein is involved in this process by exerting an antagonistic action against the early antiviral alpha/beta interferon (IFN-α/ß) response, and represents a suitable target for the development of strategies to control EBOV infection. Phage display technology permits to select antibodies as single chain Fragment variable (scFv) from an artificial immune system, due to their ability to specifically recognize the antigen of interest. ScFv is ideal for genetic manipulation and to obtain antibody constructs useful for targeting either antigens expressed on cell surface or intracellular antigens if the scFv is expressed as intracellular antibody (intrabody) or delivered into the cells. RESULTS: Monoclonal antibodies (mAb) in scFv format specific for the EBOV VP35 were isolated from the ETH-2 library of human recombinant antibodies by phage display technology. Five different clones were identified by sequencing, produced in E.coli and expressed in CHO mammalian cells to be characterized in vitro. All the selected scFvs were able to react with recombinant VP35 protein in ELISA, one of the scFvs being also able to react in Western Blot assay (WB). In addition, all scFvs were expressed in cell cytoplasm as intrabodies; a luciferase reporter gene inhibition assay performed in A549 cells showed that two of the scFvs can significantly hamper the inhibition of the IFN-ß-induced RIG-I signaling cascade mediated by EBOV VP35. CONCLUSION: Five antibodies in scFv format recognize an active form of EBOV VP35 in ELISA, while one antibody also recognizes VP35 in WB. Two of these scFvs were also able to interfere with the intracellular activity of VP35 in a cell system in vitro. These findings suggest that such antibodies in scFv format might be employed to develop therapeutic molecules able to hamper EBOV infections.


Assuntos
Filoviridae/imunologia , Filoviridae/patogenicidade , Doença pelo Vírus Ebola/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos Antivirais/imunologia , Humanos , Proteínas Virais/imunologia
7.
J Immunother ; 38(9): 357-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448580

RESUMO

Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1 malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1 melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1 melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro-expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell-mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Melanoma , Anticorpos de Cadeia Única , Linhagem Celular Tumoral , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Melanoma/terapia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
8.
BMC Pharmacol Toxicol ; 14: 47, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24053678

RESUMO

BACKGROUND: Raltegravir (Isentress®)(RALT) has demonstrated excellent efficacy in both treatment-experienced and naïve patients with HIV-1 infection, and is the first strand transfer integrase inhibitor to be approved for use in HIV infected adults worldwide. Since the in vivo efficacy of this class of antiviral drugs depends on their access to intracellular sites where HIV-1 replicates, we analyzed the biological effects induced by RALT on human MDR cell systems expressing multidrug transporter MDR1-P-glycoprotein (MDR1-Pgp). METHODS: Our study about RALT was performed by using a set of consolidated methodologies suitable for evaluating the MDR1-Pgp substrate nature of chemical and biological agents, namely: i) assay of drug efflux function; ii) analysis of MDR reversing capability by using cell proliferation assays; iii) monoclonal antibody UIC2 (mAb) shift test, as a sensitive assay to analyze conformational transition associated with MDR1-Pgp function; and iv) induction of MDR1-Pgp expression in MDR cell variant subjected to RALT exposure. RESULTS: Functional assays demonstrated that the presence of RALT does not remarkably interfere with the efflux mechanism of CEM-VBL100 and HL60 MDR cells. Accordingly, cell proliferation assays clearly indicated that RALT does not revert MDR phenotype in human MDR1-Pgp expressing cells. Furthermore, exposure of CEM-VBL10 cells to RALT does not induce MDR1-Pgp functional conformation intercepted by monoclonal antibody (mAb) UIC2 binding; nor does exposure to RALT increase the expression of this drug transporter in MDR1-Pgp expressing cells. CONCLUSIONS: No evidence of RALT interaction with human MDR1-Pgp was observed in the in vitro MDR cell systems used in the present investigation, this incorporating all sets of studies recommended by the FDA guidelines. Taken in aggregate, these data suggest that RALT may express its curative potential in all sites were HIV-1 penetrates, including the MDR1-Pgp protected blood/tissue barrier. Moreover RALT, evading MDR1-Pgp drug efflux function, would not interfere with pharmacokinetic profiles of co-administered MDR1-Pgp substrate antiretroviral drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia , Pirrolidinonas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Ligação Competitiva , Transporte Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacocinética , Células HL-60 , Humanos , Pirrolidinonas/farmacocinética , Raltegravir Potássico , Especificidade por Substrato , Vimblastina/farmacocinética , Vimblastina/farmacologia
9.
BMC Med ; 11: 4, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23289632

RESUMO

Today there are many licensed antiviral drugs, but the emergence of drug resistant strains sometimes invalidates the effects of the current therapies used in the treatment of infectious diseases. Compared to conventional antiviral drugs, monoclonal antibodies (mAbs) used as pharmacological molecules have particular physical characteristics and modes of action, and, therefore, they should be considered as a distinct therapeutic class. Despite being historically validated, antibodies may represent a novel tool for combatting infectious diseases. The current high cost of mAbs' production, storage and administration (by injection only) and the consequent obstacles to development are outweighed by mAbs' clinical advantages. These are related to a low toxicity combined with high specificity and versatility, which allows a specific antibody to mediate various biological effects, ranging from the virus neutralization mechanisms to the modulation of immune responses.This review briefly summarizes the recent technological advances in the field of immunoglobulin research, and the current status of mAb-based drugs in clinical trials for HIV and HCV diseases. For each clinical trial the available data are reported and the emerging conceptual problems of the employed mAbs are highlighted.This overview helps to give a clear picture of the efficacy and challenges of the mAbs in the field of these two infectious diseases which have such a global impact.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Terapia Biológica/métodos , Infecções por HIV/terapia , Hepatite C Crônica/terapia , Pesquisa Biomédica/tendências , Ensaios Clínicos como Assunto , Humanos
10.
Curr Pharm Biotechnol ; 14(4): 449-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22335486

RESUMO

The survival of pediatric patients with cancer entities including osteosarcoma and Ewing's sarcoma (ES), remains extremely low hence novel treatment approaches are urgently needed. Therefore, based on the concept of targeted therapy, numerous potential targets for the treatment of these cancers have been evaluated pre-clinically or in some cases even clinically during the last decade. In ES the CD99 protein is an attractive target antigen. In this respect, a new entry site for therapeutic intervention may derive from specific human antibodies against CD99. Human scFvC7 was isolated from a semi-synthetic ETH-2 antibody phage library panned on the extracellular portion of recombinant human CD99 protein. The scFvC7 was genetically sequenced, tested for CD99 recognition on an array of recombinant CD99 fragments and measured for binding affinity by ELISA. Finally, it was tested for staining CD99 antigen on a large panel of tumor and normal cells and tissues by cytofluorimetric and immunohistochemical assays. The new antibody scFvC7 recognizes the CD99 extracellular domain included between residues 50 and 74 with a binding affinity of 2.4 x 10(-8) M. In contrast with all other antibodies to CD99 so far isolated, scFvC7 shows a unique specificity in cancer cell recognition: It stained prevalently ES cells while no or weak reactivity was observed on the majority of the other tumor and normal cells and tissues. Thanks to its properties the new anti-CD99 antibody here described represents the first step towards the construction of new selective ES therapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Antígenos de Superfície/imunologia , Moléculas de Adesão Celular/imunologia , Epitopos/imunologia , Sarcoma de Ewing/imunologia , Antígeno 12E7 , Linhagem Celular Tumoral , Humanos , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
11.
Int J Oncol ; 36(6): 1513-20, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20428776

RESUMO

In this study we elucidated the role of ATP-binding cassette (ABC) multi-drug transporter proteins and cellular factors such as Bcl-2 expression and CD33 down-modulation contributing to free and hP67.6 mAb linked calicheamicin-gamma1 (CalC-gamma1) resistance. We analyzed in a well designed HL60 cell system the relationship between the expression of ABC proteins, Bcl-2 and CD33 modulation with the activity of free and mAb-linked CalC-gamma1. The results herein reported and discussed, strongly suggest that both MDR1-Pgp and MRP1 efflux systems are engaged by CalC-gamma1, but only MDR1-Pgp over-expression efficiently abrogates drug cytotoxicity in MDR cells. Paradoxically, Bcl-2 expression, as observed for other anticancer compounds belonging to the enediyne family of drugs, confers CalC-gamma1 susceptibility rather than resistance in HL60 cells. Further, the isolation of a resistant HL60 subline (HL60AL) that was developed by exposing the parental sensitive cells to sub-effective doses of gemtuzumab ozogamicin (GO) over an extended period of time shows a reduced level of CD33 expression that represents an important escape mechanism of HL60 MDR cells to the cytotoxic effect of GO.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Aminoglicosídeos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Anticorpos Monoclonais/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Enedi-Inos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Anticorpos Monoclonais Humanizados , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Gemtuzumab , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
12.
Antiviral Res ; 83(3): 238-44, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19481117

RESUMO

Effective diagnostic and therapeutic strategies are needed to control and combat the highly pathogenic avian influenza virus (AIV) subtype H5N1. To this end, we developed human monoclonal antibodies (mAbs) in single chain fragment variable (scFv) format towards the H5N1 avian influenza virus to gain new insights for the development of immunotherapy against human cases of H5N1. Using a biopanning based approach a large array of scFvs against H5N1 virus were isolated from the human semi-synthetic ETH-2 phage antibody library. H5N1 ELISA-positive scFvs with unique variable heavy (VH) and light (VL) chain gene sequences showed different biochemical properties and neutralization activity across H5N1 viral strains. In particular, the scFv clones AV.D1 and AV.C4 exerted a significant inhibition of the H5N1 A/Vietnam/1194/2004 virus infection in a pseudotype-based neutralization assay. Interestingly, these two scFvs displayed a cross-clade neutralizing activity versus A/whooping swan/Mongolia/244/2005 and A/Indonesia/5/2005 strains. These studies provide proof of the concept that human mAbs in scFv format with well-defined H5N1 recognition patterns and in vitro neutralizing activity can be easily and rapidly isolated by biopanning selection of an entirely artificial antibody repertoire using inactivated H5N1 virus as a bait.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Indonésia , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Mongólia , Testes de Neutralização , Orthomyxoviridae , Biblioteca de Peptídeos , Vietnã
13.
Cancer Chemother Pharmacol ; 64(2): 419-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19288261

RESUMO

PURPOSE: There has been an ever growing interest in the search for new anti-tumor compounds that do not interact with MDR1-Pgp and MRP1 drug transporters and so circumvent the effect of these proteins conferring multidrug resistance (MDR) and poor prognosis in AML patients. We have investigated the cytotoxic activity of the strong glutathione S-transferase (GST) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on AML (HL60) cell lines. METHODS: Functional drug efflux studies and cell proliferation assays were performed on both sensitive and MDR AML (HL60) cells after incubation with NBDHEX. Moreover, the mode of cell death (apoptosis vs. necrosis) as well as the correlation between NBDHEX susceptibility and GST activity or Bcl-2 expression was investigated. RESULTS: NBDHEX is not a substrate of either MDR1-Pgp or MRP1 efflux pumps; in fact, it is not only cytotoxic toward the parental HL60 cell line, but also overcomes the MDR phenotype of its HL60/DNR and HL60/ADR variants. CONCLUSIONS: The data herein reported show that NBDHEX mediates efficient killing of both MDR1-Pgp and MRP1 over-expressing AML cells. Therefore, this drug can potentially be used as an effective agent for treating MDR in AML patients.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa Transferase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Oxidiazóis/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Necrose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas
14.
BMC Biotechnol ; 8: 68, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18783590

RESUMO

BACKGROUND: The ability of cytosine deaminase (CD) to convert the antifungal agent 5-fluorocytosine (5-FC) into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU) raised considerable interest in this enzyme to model gene or antibody - directed enzyme-prodrug therapy (GDEPT/ADEPT) aiming to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv) format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. RESULTS: An enzymatic active recombinant CD from yeast (yCD) was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. CONCLUSION: The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function.


Assuntos
Anticorpos Monoclonais/imunologia , Citosina Desaminase/imunologia , Proteínas Fúngicas/imunologia , Fragmentos de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Engenharia de Proteínas/métodos , Anticorpos Monoclonais/genética , Citosina Desaminase/genética , Proteínas Fúngicas/genética , Fragmentos de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Proteínas Recombinantes/imunologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
15.
Int J Oncol ; 32(6): 1245-51, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18497986

RESUMO

We report the genetic construction and expression of a fusion protein between a single chain fragment variable (scFv) human antibody (E8) specific for CEA cell surface antigen and yeast cytosine deaminase (yCD). Sequences encoding for the scFvE8 human monoclonal antibody recognizing an epitope shared by CEACAM1, CEACAM3 and CEACAM5 isoforms were assembled with a monomer of yCD. The construct was placed under the transcriptional regulation of the lac promoter, and in frame with 6xHis tag for protein purification. After transformation and induction of E. coli, the protein was recovered from cell lysates and processed for purification. The scFvE8:yCD fusion protein possessed the binding specificity for melanoma (Mel P5) and colon carcinoma (LoVo) cell lines similar to its cognate human scFv antibody. The scFv8:yCD system showed the ability to render tumor cells susceptible to the far less toxic substrate 5-fluorocytosine (5-FC) by its enzymatic conversion into 5-fluorouracil (5-FU). In vitro pre-treatment of Mel P5 and LoVo cell lines with scFvE8:yCD followed by cell washing and incubation with 5-FC, resulted in significant cell killing supporting the utility of this fusion protein as an agent for tumor-selective prodrug activation. This study shows the feasibility of constructing fusion proteins in a prokaryotic cell based system consisting of a human scFv antibody and yCD to convert the antifungal agent 5-FC to 5-FU, one of the widely used anticancer agent.


Assuntos
Anticorpos Monoclonais/genética , Apoptose/efeitos dos fármacos , Antígeno Carcinoembrionário/imunologia , Neoplasias Colorretais/patologia , Citosina Desaminase/genética , Melanoma/patologia , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Western Blotting , Neoplasias Colorretais/metabolismo , Citosina Desaminase/metabolismo , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Flucitosina/farmacologia , Fluoruracila/metabolismo , Engenharia Genética , Humanos , Região Variável de Imunoglobulina/genética , Melanoma/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Células Tumorais Cultivadas/efeitos dos fármacos
16.
BMC Biotechnol ; 7: 38, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17605808

RESUMO

BACKGROUND: A hallmark of prion disease is the transformation of normal cellular prion protein (PrPc) into an infectious disease-associated isoform, (PrPsc). Anti-prion protein monoclonal antibodies are invaluable for structure-function studies of PrP molecules. Furthermore recent in vitro and in vivo studies indicate that anti-PrP monoclonal antibodies can prevent the incorporation of PrPc into propagating prions. In the present article, we show two new human phage antibodies, isolated on recombinant hamster prion protein (rHaPrP). RESULTS: We adopted an antibody phage display strategy to isolate specific human antibodies directed towards rHaPrP which has been used as a bait for panning the synthetic ETH-2 antibody phage library. Two phage antibodies clones named MA3.B4 and MA3.G3 were isolated and characterized under genetic biochemical and immunocytochemical aspects. The clones were found to recognize the prion protein in ELISA studies. In flow-cytometry studies, these human single chain Fragment variable (scFv) phage-antibodies show a well defined pattern of reactivity on human lymphoblastoid and myeloid cells. CONCLUSION: Sequence analysis of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry analysis indicate that the isolated scFvs recognize novel epitopes in the PrPc molecule. These new anti PrPc human antibodies are unique reagents for prion protein detection and may represent a biologic platform to develop new reagents to treat PrPsc associated disease.


Assuntos
Especificidade de Anticorpos/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Região Variável de Imunoglobulina/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Príons/imunologia , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Humanos , Células Jurkat
17.
BMC Cancer ; 6: 41, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16504122

RESUMO

BACKGROUND: CEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration. METHODS: The human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein. Subsequently, by in vitro mutagenesis of a gene encoding for the scFv MA39, a new library was established, and new scFv antibodies with improved affinity towards the CEA cognate epitope were selected and characterized. RESULTS: The scFv MA39 antibody was affinity-maturated by in vitro mutagenesis and the new scFv clone, E8, was isolated, typed for CEA family member recognition and its CEACAM1, 3 and 5 shared epitope characterized for expression in a large panel of human normal and tumor tissues and cells. CONCLUSION: The binding affinity of the scFv E8 is in a range for efficient, in vivo, antigen capture in tumor cells expressing a shared epitope of the CEACAM1, 3 and 5 proteins. This new immunoreagent meets all criteria for a potential anticancer compound: it is human, hence poorly or not at all immunogenic, and it binds selectively and with good affinity to the CEA epitope expressed by metastatic melanoma and colon and lung carcinomas. Furthermore, its small molecular size should provide for efficient tissue penetration, yet give rapid plasma clearance.


Assuntos
Antígeno Carcinoembrionário/química , Região Variável de Imunoglobulina/química , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Antineoplásicos/farmacologia , Bactérias/metabolismo , Biotinilação , Western Blotting , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , DNA/química , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Citometria de Fluxo , Biblioteca Gênica , Humanos , Fragmentos de Imunoglobulinas/química , Imuno-Histoquímica , Cinética , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese , Metástase Neoplásica , Biblioteca de Peptídeos , Estrutura Terciária de Proteína , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Transfecção
18.
BMC Infect Dis ; 5: 73, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16171519

RESUMO

BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. METHODS: The human synthetic single-chain fragment variable (scFv) ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N) protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. RESULTS: Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. CONCLUSION: The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Fragmentos de Imunoglobulinas/imunologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Biblioteca de Peptídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Nucleocapsídeo de Coronavírus , Epitopos/genética , Humanos , Proteínas do Nucleocapsídeo/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
19.
Hybridoma (Larchmt) ; 24(3): 127-32, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15943559

RESUMO

To overcome the limitation represented by the poor immunogenicity of prion protein (PrP) for conventional monoclonal antibodies preparation, we adopted an antibody phage display strategy to isolate specific human single chain fragment variable (scFv) directed towards the pathogenic isoform of the hamster prion protein (HaPrPsc). Phage-displaying HaPrPsc reactive scFvs were obtained after three rounds of selection of the ETH- 2 synthetic antibody library on HaPrPsc-coated immunotubes and subsequent amplification in TG1 E. coli cells. These phage-antibodies bind in ELISA to HaPrPsc and do not cross-react with the recombinant hamster prion protein (rHaPrP). Sequence analyses of the gene encoding for the antibody fragments and antigen recognition patterns determined by flow-cytometry on lymphoid cells indicate that the selected scFv recognize distinct epitopes in the PrPsc molecule. The results of this study demonstrate that display of scFvs on filamentous phage offers the possibility of producing phage antibodies showing immunoglobulin-like functions using only in vitro procedures, thus overcoming limitations of conventional hybridoma technology.


Assuntos
Anticorpos Monoclonais/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Biblioteca de Peptídeos , Príons/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Especificidade de Anticorpos , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/imunologia , Western Blotting , Linhagem Celular , Cricetinae , Ensaio de Imunoadsorção Enzimática , Epitopos , Escherichia coli/genética , Citometria de Fluxo , Humanos , Região Variável de Imunoglobulina/isolamento & purificação , Modelos Imunológicos , Dados de Sequência Molecular , Príons/genética , Príons/patogenicidade , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Recombinantes/imunologia , Análise de Sequência de DNA
20.
Hybrid Hybridomics ; 23(6): 380-4, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15684666

RESUMO

Despite biotechnological and clinical applications very few monoclonal antibodies (MAbs) directed to the enzyme glucose oxidase, have been produced so far because of the heavy side effects of the immunization schedule for conventional MAb preparation. In contrast, the phage display method allows for the selection of monoclonal human antibody fragments against any antigens, including toxic proteins. Furthermore, cDNA sequences encoding selected antibody fragments are readily identified, facilitating various molecular targeting approaches. In order to obtain such human fragments recognizing glucose oxidase, we used the large synthetic ETH-2 library based on the principle of protein design. Phage displaying glucose oxidase reactive scFvs were obtained after three rounds of selection on glucose oxidase-coated immunotubes and subsequent amplification in TG1 E. coli cells. Eventually, one high reactive scFv clone was selected and further examined. The anti-glucose oxidase scFv C10 was found suitable for Western blot; Biacore analysis showed that the binding affinity of the glucose oxidase-reactive scFv is almost equal that of MAbs prepared with conventional hybridoma technology. Finally, the cDNA sequence of this human scFv may be exploited to generate bispecific antibodies to target in the tumor environment-specific toxic enzymatic reaction.


Assuntos
Anticorpos Monoclonais/imunologia , Aspergillus niger/imunologia , Glucose Oxidase/imunologia , Região Variável de Imunoglobulina/imunologia , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...