Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21245-21259, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764615

RESUMO

Semiconducting nanoparticles (SNPs) have garnered significant attention for their role in photocatalysis technology, offering a cost-effective and highly efficient method for breaking down organic dyes. Of particular significance within SNP-based photocatalysis are tunable band gap TiO2 nanoparticles (NPs), which demonstrate remarkable enhancement in photocatalytic efficiency. In the present work, we introduce an approach for the synthesis of TiO2 NPs using kappa-carrageenan (κ-carrageenan), not just as a reducing and stabilizing agent but as a dopant for the resulting TiO2 NPs. During the synthesis of TiO2 NPs in the presence of sulfate-rich carrageenan, the process predominantly leaves residual sulfur and carbon. The presence of residual carbon, in conjunction with sulfur doping, as indicated by fast FTIR spectra, XPS, and EDX, leads to a significant reduction in the band gap of the resulting composite to 2.71 eV. The reduction of composite band gap yields remarkable degradation of methylene blue (99.97%) and methyl orange (97.84%). This work presents an eco-friendly and highly effective solution for the swift removal of environmentally harmful organic dyes.

2.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570156

RESUMO

This study propounds a sustainable alternative to petroleum-based polyurethane (PU) foams, aiming to curtail this nonrenewable resource's continued and uncontrolled use. Coconut fatty acid distillate (CFAD) and crude glycerol (CG), both wastes generated from vegetable oil processes, were utilized for bio-based polyol production for rigid PU foam application. The raw materials were subjected to catalyzed glycerolysis with alkaline-alcohol neutralization and bleaching. The resulting polyol possessed properties suitable for rigid foam application, with an average OH number of 215 mg KOH/g, an acid number of 7.2983 mg KOH/g, and a Gardner color value of 18. The polyol was used to prepare rigid PU foam, and its properties were determined using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/derivative thermogravimetric (TGA/DTA), and universal testing machine (UTM). Additionally, the cell foam morphology was investigated by scanning electron microscope (SEM), in which most of its structure revealed an open-celled network and quantified at 92.71% open-cell content using pycnometric testing. The PU foam thermal and mechanical analyses results showed an average compressive strength of 210.43 kPa, a thermal conductivity of 32.10 mW·m-1K-1, and a density of 44.65 kg·m-3. These properties showed its applicability as a type I structural sandwich panel core material, thus demonstrating the potential use of CFAD and CG in commercial polyol and PU foam production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA