Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(1): 256-263.e4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34818519

RESUMO

Cell-cycle progression is driven by the phosphorylation of cyclin-dependent kinase (Cdk) substrates.1-3 The order of substrate phosphorylation depends in part on the general rise in Cdk activity during the cell cycle,4-7 together with variations in substrate docking to sites on associated cyclin and Cks subunits.3,6,8-10 Many substrates are modified at multiple sites to provide more complex regulation.10-14 Here, we describe an elegant regulatory circuit based on multisite phosphorylation of Ndd1, a transcriptional co-activator of budding yeast genes required for mitotic progression.11,12 As cells enter mitosis, Ndd1 phosphorylation by Cdk1 is known to promote mitotic cyclin (CLB2) gene transcription, resulting in positive feedback.13-16 Consistent with these findings, we show that low Cdk1 activity promotes CLB2 expression at mitotic entry. We also find, however, that when high Cdk1 activity accumulates in a mitotic arrest, CLB2 expression is inhibited. Inhibition is accompanied by Ndd1 degradation, and we present evidence that degradation is triggered by multisite Ndd1 phosphorylation by high mitotic Cdk1-Clb2 activity. Complete Ndd1 phosphorylation by Clb2-Cdk1-Cks1 requires the phosphothreonine-binding site of Cks1, as well as a recently identified phosphate-binding pocket on the cyclin Clb2.17 We therefore propose that initial phosphorylation by Cdk1 primes Ndd1 for delayed secondary phosphorylation at suboptimal sites that promote degradation. Together, our results suggest that rising levels of mitotic Cdk1 activity act at multiple phosphorylation sites on Ndd1, first triggering rapid positive feedback and then promoting delayed negative feedback, resulting in a pulse of mitotic gene expression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclinas/genética , Retroalimentação , Mitose , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 80(6): 1092-1103.e4, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33248025

RESUMO

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , Multimerização Proteica , RNA Viral/química , SARS-CoV-2/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
3.
bioRxiv ; 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32637943

RESUMO

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription in the infected cell 1-3 . The N protein contains two globular RNA-binding domains surrounded by regions of intrinsic disorder 4 . Phosphorylation of the central disordered region is required for normal viral genome transcription 5,6 , which occurs in a cytoplasmic structure called the replication transcription complex (RTC) 7-11 . It is not known how phosphorylation controls N protein function. Here we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates 12-15 . Unmodified N protein forms partially ordered gel-like structures that depend on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces a subset of these interactions, generating a more liquid-like droplet. We speculate that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing. Inhibitors of N protein phosphorylation could therefore serve as antiviral therapy.

4.
Nat Commun ; 10(1): 5189, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729382

RESUMO

Chromosome segregation begins when the cysteine protease, separase, cleaves the Scc1 subunit of cohesin at the metaphase-to-anaphase transition. Separase is inhibited prior to metaphase by the tightly bound securin protein, which contains a pseudosubstrate motif that blocks the separase active site. To investigate separase substrate specificity and regulation, here we develop a system for producing recombinant, securin-free human separase. Using this enzyme, we identify an LPE motif on the Scc1 substrate that is distinct from the cleavage site and is required for rapid and specific substrate cleavage. Securin also contains a conserved LPE motif, and we provide evidence that this sequence blocks separase engagement of the Scc1 LPE motif. Our results suggest that rapid cohesin cleavage by separase requires a substrate docking interaction outside the active site. This interaction is blocked by securin, providing a second mechanism by which securin inhibits cohesin cleavage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Separase/metabolismo , Motivos de Aminoácidos , Anáfase , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Metáfase , Securina/genética , Securina/metabolismo , Separase/química , Especificidade por Substrato , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...