Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38284725

RESUMO

BACKGROUND: Inflammation is considered to be a link between diabetes and central nervous system (CNS) disorders, including depression and anxiety. Metformin is suggested to have antioxidant, anti-inflammatory, and mood-improving effects. The aim of the current research was to investigate the effects of the antidiabetic drug metformin on depressive- and anxiety- like behaviors and oxidative stress in the brain in a rodent model of inflammation induced by lipopolysaccharide (LPS) in male rats. MATERIALS AND METHODS: The rats were treated as follows: (1) Vehicle instead of metformin and lipopolysaccharide, (2) Lipopolysaccharide (1 mg/ kg) + vehicle instead of metformin, (3-5) Lipopolysaccharide + 50, 100, or 150 mg/ kg of metformin. After the behavioral tests, including open field (OF), elevated pulse maze (EPM), and force swimming (FS) tests, the brains were removed, and malondialdehyde (MDA), nitric oxide (NO) metabolites, total thiol, catalase (CAT) activity, interleukin-6 (IL-6) and superoxide dismutase (SOD) activity were determined. RESULTS: In the EPM, metformin increased the open arm time and entry and decreased closed arm time and entry. In the FS test, metformin lowered the immobility and increased active time compared to lipopolysaccharide. In the OF test, metformin increased total crossing and total distance, time spent, traveled distance, and crossing number in the central zone. As a result of metformin administration, IL-6, MDA, and NO metabolites were decreased while thiol content, SOD, and CAT activity were increased. CONCLUSION: The results indicated that the well-known antidiabetic drug metformin attenuated depressive- and anxiety-like behaviors induced by inflammation in rats. These beneficial effects are suggested to be due to their attenuating effects on neuroinflammation, oxidative stress, and NO in the brain.

2.
Adv Biomed Res ; 8: 49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516887

RESUMO

Developing a new strategy for an efficient targeted genome editing has always been a great perspective in biology. Although different approaches have been suggested in the last three decades, each one is confronting with limitations. CRISPR-Cas complex is a bacterial-derived system which made a breakthrough in the area of genome editing. This paper presents a brief history of CRISPR genome editing and discusses thoroughly how it works in bacteria and mammalians. At the end, some applications and challenges of this growing research area are also reviewed. In addition to moving the boundaries of genetics, CRISPR-Cas can also provide the ground for fundamental advances in other fields of biological sciences.

3.
Horm Mol Biol Clin Investig ; 39(2)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31188777

RESUMO

Background The antidiabetic and antioxidant effects of Trigonella foenum-graceum have been suggested. The effects of hydroalcoholic extract of the plant seeds and metformin against the diabetes-induced memory impairment were investigated. Materials and methods The rats were treated: (1) control, (2) diabetic (3-6) and diabetic rats treated by 50, 100 and 200 mg/kg of the plant extract or metformin. The rats were diabetic by streptozotocin (STZ, 55 mg/kg). After the passive avoidance test, malondialdehyde (MDA), nitric oxide (NO) metabolites, total thiol (SH), catalase (CAT) and superoxide dismutase (SOD) were determined in the brain. Results In the diabetic group, at 3, 24 and 48 h after receiving a shock, the latency to enter the dark room was lower than for the controls (p < 0.001). All doses of the extract and metformin increased the latencies to enter the dark at 3 and 24 h after the shock treatment (p < 0.05-p < 0.001). Additionally, the two higher doses of the extract and metformin increased the latency at 48 h after the shock (p < 0.05-p < 0.001). Diabetes also elevated MDA and NO metabolites, while it reduced thiol, SOD and CAT in the hippocampal and cortical tissues (p < 0.001). Treatment of the diabetic animals by the highest dose of the extract and also metformin reduced the MDA and NO metabolites, while it improved thiols, SOD and CAT (p < 0.01-p < 0.001). Conclusions Based on our findings, metformin and the hydro-alcoholic extract from the T. foenum-graceum seed prevented memory deficits resulting from diabetes. Preventing oxidative damage in the brain may at least, in part, be responsible for the positive effects of the extract and metformin.


Assuntos
Complicações do Diabetes , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Trigonella/química , Animais , Biomarcadores , Glicemia , Diabetes Mellitus Experimental , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/química , Ratos , Superóxido Dismutase/metabolismo
4.
Acta Biomater ; 92: 132-144, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075516

RESUMO

Traumatic brain injury (TBI) can result in permanent brain function impairment due to the poor regenerative ability of neural tissue. Tissue engineering has appeared as a promising approach to promote nerve regeneration and to ameliorate brain damage. The present study was designed to investigate the effect of transplantation of the human meningioma stem-like cells (hMgSCs) seeded in a promising three-dimensional scaffold (RADA4GGSIKVAV; R-GSIK) on the functional recovery of the brain and neuroinflammatory responses following TBI in rats. After induction of TBI, hMgSCs seeded in R-GSIK was transplanted within the injury site and its effect was compared to several control groups. Application of hMgSCs with R-GSIK improved functional recovery after TBI. A significant higher number of hMgSCs was observed in the brain when transplanted with R-GSIK scaffold compared to the control groups. Application of hMgSCs seeded in R-GSIK significantly decreased the lesion volume, reactive gliosis, and apoptosis at the injury site. Furthermore, treatment with hMgSCs seeded in R-GSIK significantly inhibited the expression of Toll-like receptor 4 and its downstream signaling molecules, including interleukin-1ß and tumor necrosis factor. These data revealed the potential for hMgSCs seeded in R-GSIK to improve the functional recovery of the brain after TBI; possibly via amelioration of inflammatory responses. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds that mimic the natural extracellular matrix of the brain may modulate stem cell fate and contribute to tissue repair following traumatic brain injury (TBI). Among several scaffolds, self-assembly peptide nanofiber scaffolds markedly promotes cellular behaviors, including cell survival and differentiation. We developed a novel three-dimensional scaffold (RADA16GGSIKVAV; R-GSIK). Transplantation of the human meningioma stem-like cells seeded in R-GSIK in an animal model of TBI significantly improved functional recovery of the brain, possibly via enhancement of stem cell survival as well as reduction of the lesion volume, inflammatory process, and reactive gliosis at the injury site. R-GSIK is a suitable microenvironment for human stem cells and could be a potential biomaterial for the reconstruction of the injured brain after TBI.


Assuntos
Laminina/química , Meningioma/patologia , Nanopartículas/química , Células-Tronco Neoplásicas/transplante , Fragmentos de Peptídeos/química , Alicerces Teciduais/química , Adulto , Animais , Apoptose , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas , Caspases/metabolismo , Diferenciação Celular , Sobrevivência Celular , Gliose/patologia , Humanos , Microglia/patologia , Células-Tronco Neoplásicas/patologia , Ratos Wistar , Esferoides Celulares/patologia
5.
Fetal Pediatr Pathol ; 38(3): 226-238, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31060440

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS: We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT: Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION: By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.


Assuntos
Terapia Genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Medula Espinal/patologia , Criança , Terapia Genética/métodos , Humanos , Lactente , Atrofia Muscular Espinal/patologia , Proteínas do Tecido Nervoso/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
6.
J Matern Fetal Neonatal Med ; 32(23): 3962-3973, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29788817

RESUMO

Introduction: An interaction between oxidative stress, neuroinflammation, and nitric oxide (NO) has been suggested to have a role neurotoxicity. The aim of current research was to investigate the effect of aminoguanidine (AG) as an inducible NO synthase (iNOS) inhibitor, on brain-derived neurotrophic factor (BDNF), oxidative stress, and interleukin-6 (IL-6) concentrations in the brain tissues of neonates born from the rats exposed to titanium dioxide nanoparticles (TiO2 NPs) during gestation. Methods: The pregnant rats were grouped into three and received: (1) saline, (2) TiO2 (200 mg/kg, gavage), and (3) TiO2-AG [200 mg/kg intraperitoneal (IP)]. The treatment was started since the second gestation day up to the delivery time. The neonates born from the rats were deeply anesthetized, sacrificed, and the brains were collected for biochemical evaluations. Results: The neonates born from the rats exposed to TiO2 showed a lower BDNF (p < .001) but a higher IL-6 (p < .01) concentrations in their hippocampal tissue. TiO2 exposure also increased malondialdehyde (MDA) (p < .001) and NO metabolites (p < .001), while diminished thiol (p < .001), superoxide (SOD) (p < .001), and catalase (CAT) (p < .001) in all hippocampal, cortical, and cerebellar tissues. Administration of AG improved BDNF (p < .01) but attenuated IL-6 (p < .01) concentrations in the hippocampal tissue. AG also decreased MDA (p < .001) and NO metabolites (p < .01-p < .001), while increased thiol (p < .01-p < .001), SOD (p < .001), and CAT (p < .05-p < .001) in all cerebellar, hippocampal, cortical, and tissues. Conclusion: The results of the current research revealed that iNOS inhibitor AG, ameliorated oxidative stress, IL-6 concentration, and improved BDNF in the brain tissues of neonates born from TiO2 NPs exposed rats.


Assuntos
Encéfalo/efeitos dos fármacos , Guanidinas/farmacologia , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Titânio/toxicidade , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Guanidinas/uso terapêutico , Interleucina-6/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
7.
Hematology ; 23(10): 778-784, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29757120

RESUMO

OBJECTIVE: Serine/arginine-rich splicing factor 2 (SRSF2) mutations were detected frequently in myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) patients. However, its prognostic value has not yet been fully clarified. METHODS: In this meta-analysis, Hazard Ratio (HR) and 95% confidence interval (CI) for overall-survival (OS) were chosen to evaluate the prognostic impact of SRSF2 mutations and to compare SRSF2 mutations to those with wild-type. RESULTS: A total of 2056 patients from 12 studies were obtained. The pooled HRs for OSsuggested that patients with MDS had a poorer prognosis (HR = 1.780, 95% CI (1.410-2.249)), while analysis on SRSF2 mutations revealed no significant effect on the prognosis of CMML patients (HR = 1.091, 95% CI (0.925-1.286)). The frequency of SRSF2 mutations was found to be 11.5% and 39.8% in patients with MDS and CMML, respectively. DISCUSSION: This meta-analysis suggests that SRSF2 has a poor prognosis in patients with MDS, but no prognosis impact on patients with CMML. CONCLUSION: In conclusion, SRSF2 mutations were significantly related to the shorter OS in patients with MDS which may consider as an adverse prognostic risk factor. Whereas, analysis did not show any prognostic effect on OS of CMML patients with SRSF2 mutations.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Fatores de Processamento de Serina-Arginina/genética , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Taxa de Sobrevida
8.
Neural Regen Res ; 12(3): 380-384, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28469644

RESUMO

Gaucher disease (GD), the commonest lysosomal storage disorder, results from the lack or functional deficiency of glucocerebrosidase (GCase) secondary to mutations in the GBA1 gene. There is an established association between GBA1 mutations and Parkinson's disease (PD), and indeed GBA1 mutations are now considered to be the greatest genetic risk factor for PD. Impaired lysosomal-autophagic degradation of cellular proteins, including α-synuclein (α-syn), is implicated in the pathogenesis of PD, and there is increasing evidence for this also in GD and GBA1-PD. Indeed we have recently shown in a Drosophila model lacking neuronal GCase, that there are clear lysosomal-autophagic defects in association with synaptic loss and neurodegeneration. In addition, we demonstrated alterations in mechanistic target of rapamycin complex 1 (mTORC1) signaling and functional rescue of the lifespan, locomotor defects and hypersensitivity to oxidative stress on treatment of GCase-deficient flies with the mTOR inhibitor rapamycin. Moreover, a number of other recent studies have shown autophagy-lysosomal system (ALS) dysfunction, with specific defects in both chaperone-mediated autophagy (CMA), as well as macroautophagy, in GD and GBA1-PD model systems. Lastly we discuss the possible therapeutic benefits of inhibiting mTOR using drugs such as rapamycin to reverse the autophagy defects in GD and PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...