Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(4): 1505-1518, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37437298

RESUMO

We report a Monte Carlo simulation study of length-scale-dependent density fluctuations in cavities in the coarse-grained mW representation of water at ambient conditions. Specifically, we use a combination of test particle insertion and umbrella sampling techniques to examine the full range of water occupation states in spherical cavities up to 6.3 Å radius in water. As has previously been observed, water density fluctuations are found to be effectively Gaussian in nature for atomic-scale cavities, but as the cavities get larger, they exhibit a non-Gaussian "fat-tail" distribution for lower occupancy states. We introduce a new statistical thermodynamic approach to analyze non-Gaussian fluctuations based on the radial distribution of waters about cavities with varying numbers of waters within its boundaries. It is shown that the onset of these non-Gaussian fluctuations is a result of the formation of a bubble within the cavity as it is emptied, which is accompanied by the adsorption of waters onto its interior surface. We revisit a theoretical framework we previously introduced to describe Gaussian fluctuations within cavities to incorporate bubble formation by including surface tension contributions. This modified theory accurately describes density fluctuations within both atomic and meso-scale cavities. Moreover, the theory predicts the transition from Gaussian to non-Gaussian fluctuations at a specific cavity occupancy, in excellent agreement with simulation observations.

2.
J Chem Theory Comput ; 19(23): 8826-8838, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37978934

RESUMO

Concentrated aqueous salt solutions are ubiquitous in problems of biological and environmental relevance. The development of accurate force fields that capture the interactions between dissolved species in solution is crucial to simulating these systems to gain molecular insights into the underlying processes under saline conditions. The osmotic pressure is a relatively simple thermodynamic property connecting the experimental and simulation measurements of the associative properties of the ions in solution. Milner [C. Gillespie and S. T. Milner, Soft Matter, 16, 9816 (2020)] proposed a simulation approach to evaluate the osmotic pressures of salts in solution by applying a restraint potential to the ions alone in solution and determining the resulting pressure required to balance that potential, referred to here as the osmotic force balance. Here, we expand Milner's approach, demonstrating that the chemical potentials of the salts in solution as a function of concentration can be fitted to the concentration profiles determined from simulation, additionally providing an analytical expression for the osmotic pressure. This approach is used to determine the osmotic pressures of 15 alkali halide salts in water from simulations. The cross interactions between cations and anions in solution are subsequently optimized to capture their experimental osmotic pressures.

3.
Biomimetics (Basel) ; 7(4)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36412724

RESUMO

Nature has proven to be a valuable resource in inspiring the development of novel technologies. The field of biomimetics emerged centuries ago as scientists sought to understand the fundamental science behind the extraordinary properties of organisms in nature and applied the new science to mimic a desired property using various materials. Through evolution, living organisms have developed specialized surface coatings and chemistries with extraordinary properties such as the superhydrophobicity, which has been exploited to maintain structural integrity and for survival in harsh environments. The Lotus leaf is one of many examples which has inspired the fabrication of superhydrophobic surfaces. In this review, the fundamental science, supported by rigorous derivations from a thermodynamic perspective, is presented to explain the origin of superhydrophobicity. Based on theory, the interplay between surface morphology and chemistry is shown to influence surface wetting properties of materials. Various fabrication techniques to create superhydrophobic surfaces are also presented along with the corresponding advantages and/or disadvantages. Recent advances in the characterization techniques used to quantify the superhydrophobicity of surfaces is presented with respect to accuracy and sensitivity of the measurements. Challenges associated with the fabrication and characterization of superhydrophobic surfaces are also discussed.

4.
J Phys Chem B ; 126(39): 7604-7614, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154059

RESUMO

We connect density fluctuations in liquid water to lengthscale dependent crossover in hydrophobic hydration. Specifically, we employ indirect umbrella sampling (INDUS) simulations to characterize density fluctuations in observation volumes of various sizes and shapes in water and as a function of temperature and salt concentration. Consistent with previous observations, density fluctuations are Gaussian in small molecular scale volumes, but they display non-Gaussian "low-density fat tails" in larger volumes. These non-Gaussian tails are indicative of the proximity of water to its liquid to vapor phase transition and have implications on biomolecular interactions and function. We show that the onset of non-Gaussian fluctuations in large volumes is accompanied by the formation of a cavity in the observation volume. We develop a model that uses the physics of cavity-water interface formation as a key ingredient and show that it captures the nature of non-Gaussian density fluctuations over a broad region in water and in salt solutions. We discuss the limitations of this model in the very low density region of the distribution. Our calculations provide new insights into the origins of non-Gaussian density fluctuations in water and their connections to lengthscale dependent crossover in hydrophobic hydration.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Água/química
5.
J Phys Chem B ; 126(16): 3150-3160, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35438501

RESUMO

The complexity of macromolecular surfaces means that there are still many open questions regarding how specific areas are solvated and how this might affect the complexation of guests. Contributing to the identification and classification of the different possible mechanisms of complexation events in aqueous solution, and as part of the recent SAMPL8 exercise, we report here on the synthesis and conformational properties of TEEtOA 2, a cavitand with conformationally flexible ethyl groups at its portal. Using a combination of ITC and NMR spectroscopy, we report the binding affinities of a series of carboxylates to 2 and compare it to a related cavitand TEMOA 1. Additionally, we report MD simulations revealing how the wetting of the pocket of 2 is controlled by the conformation of its rim ethyl groups and, correspondingly, a novel triggered wetting, guest complexation mechanism, whereby the approaching guest opens up the pocket of the host, inducing its wetting and ultimately allows the formation of a hydrated host-guest complex (H·G·H2O). A general classification of complexation mechanisms is also suggested.


Assuntos
Água , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Conformação Molecular , Água/química , Molhabilidade
6.
ACS Appl Polym Mater ; 4(1): 327-337, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35059643

RESUMO

Block copolymers (BCPs) consist of two or more covalently bound chemically distinct homopolymer blocks. These macromolecules have emerging applications in photonics, membrane separations, and nanolithography stemming from their self-assembly into regular nanoscale structures. Theory suggests that cyclic BCPs should form features up to 40% smaller than their linear analogs while also exhibiting superior thin-film stability and assembly dynamics. However, the complex syntheses required to produce cyclic polymers mean that a need for pure cyclic BCPs would present a challenge to large-scale manufacturing. Here, we employ dissipative particle dynamics simulations to probe the self-assembly behavior of cyclic/linear BCP blends, focusing on nanofeature size and interfacial width as these qualities are critical to nanopatterning applications. We find that for mixtures of symmetric cyclic and linear polymers with equivalent lengths, up to 10% synthetic impurity has a minimal impact on cyclic BCP feature dimensions and interfacial roughness. On the other hand, blending with cyclic BCPs provides a route to "fine-tune" linear BCP feature sizes. We analyze simulated blend domain spacings within the context of strong segregation theory and find significant deviations between simulation and theory that arise from molecular-level packing motifs not included in theory. These insights into blend self-assembly will assist experimentalists in rationally designing BCP materials for advanced nanolithography applications.

7.
J Am Chem Soc ; 143(44): 18605-18616, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704751

RESUMO

There are many open questions regarding the supramolecular properties of ions in water, a fact that has ramifications within any field of study involving buffered solutions. Indeed, as Pielak has noted (Buffers, Especially the Good Kind, Biochemistry, 2021, in press. DOI:10.1021/acs.biochem.1c00200) buffers were conceived of with little regard to their supramolecular properties. But there is a difficulty here; the mathematical models supramolecular chemists use for affinity determinations do not account for screening. As a result, there is uncertainty as to the magnitude of any screening effect and how this compares to competitive salt/buffer binding. Here we use a tetra-cation cavitand to compare halide affinities obtained using a traditional unscreened model and a screened (Debye-Hückel) model. The rule of thumb that emerges is that if ionic strength is changed by >1 order of magnitude─either during a titration or if a comparison is sought between two different buffered solutions─screening should be considered. We also build a competitive mathematical model showing that binding attenuation in buffer is largely due to competitive binding to the host by said buffer. For the system at hand, we find that the effect of competition is approximately twice that of the effect of screening (∼RT at 25 °C). Thus, for strong binders it is less important to account for screening than it is to account for competitive complexation, but for weaker binders both effects should be considered. We anticipate these results will help supramolecular chemists unravel the properties of buffers and so help guide studies of biomacromolecules.


Assuntos
Sais/química , Ligação Competitiva , Soluções Tampão , Cátions , Ligação de Hidrogênio , Concentração Osmolar , Água/química
8.
J Phys Chem Lett ; 12(34): 8370-8375, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435491

RESUMO

Using simulations and theory, we examine the enthalpy and entropy of hydrophobic hydration which exhibit minima in supercooled water, contrasting with the monotonically increasing temperature dependence traditionally ascribed to these properties. The enthalpy/entropy minima are marked by a negative to positive sign change in the heat capacity at a size-dependent reversal temperature. A Gaussian fluctuation theory accurately captures the reversal temperature, tracing it to water's distinct thermal expansivity and compressibility influenced by its metastable liquid-liquid critical point.

9.
J Phys Chem B ; 125(29): 8152-8164, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34283590

RESUMO

The hydration of hydrophobic solutes is intimately related to the spontaneous formation of cavities in water through ambient density fluctuations. Information theory-based modeling and simulations have shown that water density fluctuations in small volumes are approximately Gaussian. For limiting cases of microscopic and macroscopic volumes, water density fluctuations are known exactly and are rigorously related to the density and isothermal compressibility of water. Here, we develop a theory-interpolated gaussian fluctuation theory (IGFT)-that builds an analytical bridge to describe water density fluctuations from microscopic to molecular scales. This theory requires no detailed information about the water structure beyond the effective size of a water molecule and quantities that are readily obtained from water's equation-of-state-namely, the density and compressibility. Using simulations, we show that IGFT provides a good description of density fluctuations near the mean, that is, it characterizes the variance of occupancy fluctuations over all solute sizes. Moreover, when combined with the information theory, IGFT reproduces the well-known signatures of hydrophobic hydration, such as entropy convergence and solubility minima, for atomic-scale solutes smaller than the crossover length scale beyond which the Gaussian assumption breaks down. We further show that near hydrophobic and hydrophilic self-assembled monolayer surfaces in contact with water, the normalized solvent density fluctuations within observation volumes depend similarly on size as observed in the bulk, suggesting the feasibility of a modified version of IGFT for interfacial systems. Our work highlights the utility of a density fluctuation-based approach toward understanding and quantifying the solvation of non-polar solutes in water and the forces that drive them toward surfaces with different hydrophobicities.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Soluções , Solventes , Termodinâmica
10.
J Phys Chem B ; 125(26): 7299-7310, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170690

RESUMO

Confinement within nanoscale spaces can dramatically alter the ensemble of conformations flexible species explore. For example, chaperone complexes take advantage of confinement to fold misfolded proteins, while viral capsids transport genomic materials in tight packings. Here we examine the free energy landscapes of n-alkanes confined within supramolecular dimeric complexes of deep-cavity cavitand octa-acid, which have been experimentally demonstrated to force these chains with increasing length to adopt extended, helical, hairpin, and spinning top conformational motifs, using molecular simulations. Alkanes up to n-docosane in both vacuum and water predominantly exhibit a free energy minimum for elongated conformations with a majority of trans dihedrals. Within harmonically sealed cavitand dimers, however, the free energy landscapes as a function of the end-to-end distance between their terminal methyl units exhibit minima that evolve with the length of the alkane. Distinct free energy basins are observed between the helical and hairpin motifs and between the hairpin and chicane motifs whose relative stability changes with the number of carbons in the bound guest. These changes are reminiscent of two state-like protein folding, although the observed alkane conformations confined are more insensitive to temperature perturbation than proteins are. While the chicane motif within the harmonically sealed dimers has not been observed experimentally, this conformation relaxes to the observed spinning top motif once the harmonic restraints are released for the complexes in aqueous solution, indicating that these motifs are related to one another. We do not observe distinct minima between the confined extended and helical motifs, suggesting these conformers are part of a larger linear motif family whose population of gauche dihedral angles grows in proportion to the number of carbons in the chain to ultimately form a helix that fits the alkane within the complex.


Assuntos
Alcanos , Água , Conformação Molecular , Proteínas
11.
J Phys Chem B ; 125(19): 4925-4927, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34011143
12.
J Phys Chem B ; 125(13): 3253-3268, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33651614

RESUMO

Water is the dominant liquid on Earth. Despite this, the main focus of supramolecular chemistry research has been on binding and assembly events in organic solvents. This arose because it is more straightforward to synthesize organic-media-soluble hosts and because of the relative simplicity of organic solvents compared to water. Nature, however, relies on water as a solvent, and spurred by this fact, supramolecular chemists have recently been making forays into the aqueous domain to understand water-mediated non-covalent interactions. These studies can benefit from the substantial understanding of the hydrophobic effect and electrostatic interactions developed by physical chemists. Nearly 20 years ago, the Gibb group first synthesized a class of water-soluble host molecules, the deep-cavity cavitands, that possess non-polar pockets that readily bind non-polar moieties in aqueous solution and are capable of assembling into a wide range of complexes with distinct stoichiometries. As such, these amphipathic host species are ideal platforms for studying the role of negatively curved features on guest complexation and the structural requirements for guided assembly processes driven by the hydrophobic effect. Here we review the collaborative experimental and computational investigations between Gibb and Ashbaugh over the past 10 years exploring questions including the following: How does water wet/solvate the non-polar surfaces of non-polar pockets? How does this wetting control the binding of non-polar guests? How does wetting affect the binding of anionic species? How does the nature and size of a guest size impact the assembly of cavitand hosts into multimeric capsular complexes? What are the conformational motifs of guests packed within the confines of capsular complexes? How might the electrostatic environment engendered by hosts impact the properties and reactivity of internalized guests?


Assuntos
Éteres Cíclicos , Água , Resorcinóis , Molhabilidade
13.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33384327
14.
Chem Sci ; 11(14): 3656-3663, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32864079

RESUMO

Science still does not have the ability to accurately predict the affinity that ligands have for proteins. In an attempt to address this, the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) series of blind predictive challenges is a community-wide exercise aimed at advancing computational techniques as standard predictive tools in rational drug design. In each cycle, a range of biologically relevant systems of different levels of complexity are selected to test the latest modeling methods. As part of this on-going exercise, and as a step towards understanding the important factors in context dependent guest binding, we challenged the computational community to determine the affinity of a series of negatively and positively charged guests to two constitutionally isomeric cavitand hosts: octa-acid 1, and exo-octa acid 2. Our affinity determinations, combined with molecular dynamics simulations, reveal asymmetries in affinities between host-guest pairs that cannot alone be explained by simple coulombic interactions, but also point to the importance of host-water interactions. Our work reveals the key facets of molecular recognition in water, emphasizes where improvements need to be made in modelling, and shed light on the complex problem of ligand-protein binding in the aqueous realm.

15.
J Phys Chem B ; 124(31): 6924-6942, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692557

RESUMO

The hydrophobic effect is an umbrella term encompassing a number of solvation phenomena associated with solutions of nonpolar species in water, including the following: a meager solubility opposed by entropy at room temperature; large positive hydration heat capacities; positive shifts in the temperature of maximum density of aqueous mixtures; increases in the speed of sound of dilute aqueous mixtures; and negative volumes of association between interacting solutes. Here we present a molecular simulation study of nonpolar gas hydration over the temperature range 273.15-373.15 K and a pressure range -500 to 1000 bar to investigate the interrelationships between distinct hydrophobic phenomena. We develop a new free energy correlation for the solute chemical potentials founded on the Tait equation description of the equation-of-state of liquid water. This analytical correlation is shown to provide a quantitatively accurate description of nonpolar gas hydration over the entire range of thermodynamic state points simulated, with an error of ∼0.02 kBT or lower in the fitted chemical potentials. Our simulations and the correlation accurately reproduce many of the available experimental results for the hydration of the solutes examined here. Moreover, the correlation reproduces the characteristic entropies of hydration, temperature dependence of the hydration heat capacity, perturbations in the temperature of maximum density, and changes in the speed of sound. While negative volumes of association result from pairwise interactions in solution, beyond the limits of our simulations performed at infinite dilution, we discuss how our correlation could be supplemented with second virial coefficient information to expand to finite concentrations. In total, this work demonstrates that many distinct phenomena associated with the hydrophobic effect can be captured within a single thermodynamically consistent correlation for solute hydration free energies.

16.
J Phys Chem B ; 124(23): 4781-4792, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403924

RESUMO

Hydrophobic interactions drive the binding of nonpolar ligands to the oily pockets of proteins and supramolecular species in aqueous solution. As such, the wetting of host pockets is expected to play a critical role in determining the thermodynamics of guest binding. Here we use molecular simulations to examine the impact of pressure on the wetting and dewetting of the nonpolar pockets of a series of deep-cavity cavitands in water. The portals to the cavitand pockets are functionalized with both nonpolar (methyl) and polar (hydroxyl) groups oriented pointing either upward or inward toward the pocket. We find wetting of the pocket is favored by the hydroxyl groups and dewetting is favored by the methyl groups. The distribution of waters in the pocket is found to exhibit a two-state-like equilibrium between wet and dry states with a free energy barrier between the two states. Moreover, we demonstrate that the pocket hydration of the cavitands can be collapsed onto a unified adsorption isotherm by assuming the effective pressures within each cavitand pocket differ by a shift pressure that depends on the chemical identity and number of functional groups placed about the portal. These observations support the development of a two-state capillary evaporation model that accurately describes the equilibrium between states and naturally gives rise to the effective shift pressures observed from simulation. This work demonstrates that the hydration of host pockets can be tuned following simple design rules that in turn are expected to impact the thermodynamics of guest complexation.

17.
Nat Chem ; 12(7): 589-594, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424255

RESUMO

There are many open questions regarding the hydration of solvent-exposed non-polar tracts and pockets in proteins. Although water is predicted to de-wet purely repulsive surfaces and evacuate crevices, the extent of de-wetting is unclear when ubiquitous van der Waals interactions are in play. The structural simplicity of synthetic supramolecular hosts imbues them with considerable potential to address this issue. To this end, here we detail a combination of densimetry and molecular dynamics simulations of three cavitands, coupled with calorimetric studies of their complexes with short-chain carboxylates. Our results reveal the range of wettability possible within the ostensibly identical cavitand pockets-which differ only in the presence and/or position of the methyl groups that encircle the portal to their non-polar pockets. The results demonstrate the ability of macrocycles to template water cavitation within their binding sites and show how the orientation of methyl groups can trigger the drying of non-polar pockets in liquid water, which suggests new avenues to control guest complexation.


Assuntos
Éteres Cíclicos/química , Proteínas/química , Resorcinóis/química , Solventes/química , Água/química , Modelos Químicos , Simulação de Dinâmica Molecular , Conformação Proteica , Soluções , Termodinâmica , Molhabilidade
18.
J Am Chem Soc ; 141(16): 6740-6747, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30929421

RESUMO

The intrinsic structural complexity of proteins makes it hard to identify the contributions of each noncovalent interaction behind the remarkable rate accelerations of enzymes. Coulombic forces are evidently primary, but despite developments in artificial nanoreactor design, a picture of the extent to which these can contribute has not been forthcoming. Here we report on two supramolecular capsules that possess structurally identical inner-spaces that differ in the electrostatic potential (EP) field that envelops them: one positive and one negative. This architecture means that only changes in the EP field influence the chemical properties of encapsulated species. We quantify these influences via acidity and rates of cyclization measurements for encapsulated guests, and we confirm the primary role of Coulombic forces with a simple mathematical model approximating the capsules as Born spheres within a continuum dielectric. These results reveal the reaction rate accelerations possible under Coulombic control and highlight important design criteria for nanoreactors.

19.
Angew Chem Int Ed Engl ; 57(46): 15133-15137, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30368997

RESUMO

The influence of oily molecules on the structure of liquid water is a question of importance to biology and geology and many other fields. Previous experimental, theoretical, and simulation studies of methane in liquid water have reached widely conflicting conclusions regarding the structure of hydrophobic hydration-shells. Herein we address this question by performing Raman hydration-shell vibrational spectroscopic measurements of methane in liquid water from -10 °C to 300 °C (at 30 MPa, along a path that parallels the liquid-vapor coexistence curve). We show that, near ambient temperatures, methane's hydration-shell is slightly more tetrahedral than pure water. Moreover, the hydration-shell undergoes a crossover to a more disordered structure above ca. 85 °C. Comparisons with the crossover temperature of aqueous methanol (and other alcohols) reveal the stabilizing influence of an alcohol OH head-group on hydrophobic hydration-shell fragility.

20.
Biomacromolecules ; 19(8): 3177-3189, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29986144

RESUMO

A series of branched polymers, consisting of a poly(ethylene glycol) (PEG) core and lipophilic peripheral dendrons, were synthesized and their self-assembly into reverse micelles studied toward the ultimate goal of carrier-mediated transdermal drug delivery. More specifically, this investigation systematically explores the structure-property contributions arising from location and extent of branching by varying the number of branch points at the core and the generation of dendrons at the polar/nonpolar interface. For branching at the core, PEGs were selected with one, two or four arms, with one terminal functionality per arm. For peripheral branching, end groups were modified with polyester dendrons (of dendritic generations 0, 1, and 2) for each of the three cores. Finally, lauric acid (LA) was used to esterify the periphery, yielding a library of branched, amphiphilic polymers. Characterization of these materials via MALDI-TOF MS, GPC and NMR confirmed their exceptionally well-defined structure. Furthermore, atomic force microscopy (AFM) and dynamic light scattering (DLS) confirmed these polymers' abilities to make discrete aggregates. As expected, increased multiplicity of branching resulted in more compact aggregates; however, the location of branching (core vs periphery) did not seem as important in defining aggregate size as the extent of branching. Finally, computational modeling of the branched amphiphile series was explored to elucidate the macromolecular interactions governing self-assembly in these systems.


Assuntos
Dendrímeros/síntese química , Micelas , Tensoativos/síntese química , Ácidos Láuricos/química , Polietilenoglicóis/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA