Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(44): 41054-41063, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970029

RESUMO

Poly(vinyl alcohol) (PVA), a naturally occurring and rapidly decomposing polymer, has gained significant attention in recent studies for its potential use in pollution preventive materials. Its cost-effectiveness and ease of availability as well as simple processing make it a suitable material for various applications. However, the only concern about PVA's applicability to various applications is its hydrophilic nature. To address this limitation, PVA-based nanocomposites can be created by incorporating inorganic fillers such as graphene (G). Graphene is a two-dimensional carbon crystal with a single atom-layer structure and has become a popular choice as a nanomaterial due to its outstanding properties. In this study, we present a simple and environmentally friendly solution processing technique to fabricate PVA and graphene-based nanocomposite films. The resulting composite films showed noticeable improvement in barrier properties against moisture, oxygen, heat, and mechanical failures. The improvement of the characteristic properties is attributed to the uniform dispersion of graphene in the PVA matrix as shown in the SEM image. The addition of graphene leads to a decrease in water vapor transmission rate (WVTR) by 79% and around 90% for the oxygen transmission rate (OTR) as compared to pristine PVA films. Notably, incorporating just 0.5 vol % of graphene results in an OTR value of as low as 0.7 cm m-2 day-1 bar-1, making it highly suitable packaging applications. The films also exhibit remarkable flexibility and retained almost the same WVTR values even after going through tough bending cycles of more than 2000 at a bending radius of 2.5 cm. Overall, PVA/G nanocomposite films offer promising potential for PVA/G composite films for various attractive pollution prevention (such as corrosion resistant coatings) and packaging applications.

2.
Polymers (Basel) ; 14(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433147

RESUMO

Starch and gelatin are natural biopolymers that offer a variety of benefits and are available at relatively low costs. In addition to this, they are an appealing substitute for synthetic polymers for the manufacturing of packaging films. Such packaging films are not only biodegradable but are also edible. Moreover, they are environmentally friendly and remain extremely cost-effective. In lieu of this, films made from fish gelatin and cornstarch have been the subject of several experiments. The pristine gelatin films have poor performance against water diffusion but exhibit excellent flexibility. The goal of this study was to assess the performance of pristine gelatin films along with the addition of food plasticizers. For this purpose, solutions of gelatin/cornstarch were prepared and specified quantities of food colors/plasticizers were added to develop different shades. The films were produced by using a blade coating method and were characterized by means of their shaded colors, water vapor transmission rate (WVTR), compositional changes via Fourier transform infrared spectroscopy (FTIR), hardness, bendability, transparency, wettability, surface roughness, and thermal stability. It was observed that the addition of several food colors enhanced the moisture blocking effect, as a 10% reduction in WVTR was observed in the shaded films as compared to pristine films. The yellow-shaded films exhibited the lowest WVTR, i.e., around 73 g/m2·day when tested at 23 °C/65%RH. It was also observed that the films' WVTR, moisture content, and thickness were altered when different colors were added into them, although the chemical structure remained unchanged. The mechanical properties of the shaded films were improved by a factor of two after the addition of colored plasticizers. Optical examination and AFM demonstrated that the generated films had no fractures and were homogeneous, clear, and shiny. Finally, a biscuit was packaged in the developed films and was monitored via shore hardness. It was observed that the edible packed sample's hardness remained constant even after 5 days. This clearly suggested that the developed films have the potential to be used for packaging in various industries.

3.
Bioengineering (Basel) ; 9(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004892

RESUMO

Implants are used to replace damaged biological structures in human body. Although stainless steel (SS) is a well-known implant material, corrosion of SS implants leads to the release of toxic metallic ions, which produce harmful effects in human body. To prevent material degradation and its harmful repercussions, these implanted materials are subjected to biocompatible coatings. Polymeric coatings play a vital role in enhancing the mechanical and biological integrity of the implanted devices. Zein is a natural protein extracted from corn and is known to have good biocompatibility and biodegradability. In this study, zein/Ag-Sr doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were deposited on SS substrates via electrophoretic deposition (EPD) at different parameters. Ag and Sr ions were added to impart antibacterial and osteogenic properties to the coatings, respectively. In order to examine the surface morphology of coatings, optical microscopy and scanning electron microscopy (SEM) were performed. To analyze mechanical strength, a pencil scratch test, bend test, and corrosion and wear tests were conducted on zein/Ag-Sr doped MBGN coatings. The results show good adhesion strength, wettability, corrosion, and wear resistance for zein/Ag-Sr doped MBGN coatings as compared to bare SS substrate. Thus, good mechanical and biological properties were observed for zein/Ag-Sr doped MBGN coatings. Results suggested these zein/Ag-Sr MBGNs coatings have great potential in bone regeneration applications.

4.
Membranes (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877904

RESUMO

The majority of food packaging materials are petroleum-based polymers, which are neither easily recyclable nor ecologically friendly. Packaging films should preferably be transparent, light in weight, and easy to process, as well as mechanically flexible, and they should meet the criteria for food encapsulation. In this study, poly (vinyl alcohol) (PVA)-based films were developed by incorporating glass flakes into the films. The selection of PVA was based on its well-known biodegradability, whereas the selection of glass flakes was based on their natural impermeability to oxygen and moisture. The films were processed using the blade coating method and were characterized in terms of transparency, oxygen transmission rate, mechanical strength, and flexibility. We observed that the incorporation of glass flakes into the PVA matrix did not significantly change the transparency of the PVA films, and they exhibited a total transmittance of around 87% (at 550 nm). When the glass flakes were added to the PVA, a significant reduction in moisture permeation was observed. This reduction was also supported and proven by Bhardwaj's permeability model. In addition, even after the addition of glass flakes to the PVA, the films remained flexible and showed no degradation in terms of the water vapor transmission rate (WVTR), even after bending cycles of 23,000. The PVA film with glass flakes had decent tensile characteristics, i.e., around >50 MPa. Increasing the concentration of glass flakes also increased the hardness of the films. Finally, a piece of bread was packaged in a well-characterized composite film. We observed that the bread packaged in the PVA film with glass flakes did not show any degradation at all, even after 10 days, whereas the bread piece packaged in a commercial polyethylene bag degraded completely. Based on these results, the developed packaging films are the perfect solution to replace commercial non-biodegradable films.

5.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160991

RESUMO

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. In this work, commonly available household materials such as gelatin, soy protein, corn starch, and papaya were used to prepare cost-effective lab-scale biodegradable and edible packaging film as an effective alternative to commercial plastics to reduce waste generation. Prepared films were characterized in terms of Fourier transform infrared spectroscopy (FTIR), water vapor transmission rate (WVTR), optical transparency, and tensile strength. FTIR confirmed the addition of papaya and soy protein to the gelatin backbone. WVTR of the gelatin-papaya films was recorded to be less than 50 g/m2/day. This water vapor barrier was five times better than films of pristine gelatin. The gelatin, papaya, and soy protein films exhibited transparencies of around 70% in the visible region. The tensile strength of the film was 2.44 MPa, which improved by a factor of 1.5 for the films containing papaya and soy protein. The barrier qualities of the gelatin and gelatin-papaya films maintained the properties even after going through 2000 bending cycles. From the results, it is inferred that the prepared films are ideally suitable for food encapsulation and their production on a larger scale can considerably cut down the plastic wastage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...