Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
AMB Express ; 14(1): 52, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704474

RESUMO

Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.

2.
ACS Omega ; 9(18): 20477-20487, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737064

RESUMO

The hydroethanol (70%) extracts of three Lobelia species (L. nicotianifolia, L. sessilifolia, and L. chinensis) were analyzed using LC-ESI-MS/MS. Forty-five metabolites were identified, including different flavonoids, coumarin, polyacetylenes, and alkaloids, which were the most abundant class. By applying Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) based on LC-ESI-MS/MS analysis, the three species were completely segregated from each other. In addition, the three Lobelia extracts were tested for their antioxidant activities using a DPPH assay and as antidiabetic agents against α-glycosidase and α-amylase enzymes. L. chinensis extract demonstrated significant antioxidant activity with an IC50 value of 1.111 mg/mL, while L. nicotianifolia showed mild suppressing activity on the α-glycosidase activity with an IC50 value of 270.8 µg/mL. A molecular simulation study was performed on the main compounds to predict their potential antidiabetic activity and pharmacokinetic properties. The molecular docking results confirmed the α-glycosidase inhibitory activity of the tested compounds, as seen in their binding mode to the key amino acid residues at the binding site compared to that of the standard drug acarbose. Furthermore, the predictive ADMET results revealed good pharmacokinetic properties of almost all of the tested compounds. The biological evaluation results demonstrated the promising activity of the tested compounds, aligned with the in silico results.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38808966

RESUMO

Fishmeal substitution with sustainable feed sources is highly essential towards sustainable production. This study aimed to investigate the effects of substituting fishmeal (FM) with Daphnia magna biomass meal (DBM) or zooplankton biomass meal (ZBM) on growth performance, liver and intestinal histology, gut bacterial abundance and stress tolerance of Nile tilapia, Oreochromis niloticus, fry. Nile tilapia fry (0.23 ± 0.04 g) were randomly assigned to five groups of three replicates. The control diet comprised 300 g/kg FM, and the FM was substituted with DBM or ZBM at levels of 25% and 50% (DBM-25, DBM-50, ZBM-25 and ZBM-50 respectively) in the other experimental diets. The experiment lasted 56 days in 1.5 m3 concrete tanks. The results revealed that weight gain and feed conversion ratio (FCR) significantly (p ≤ 0.035 and 0.025 respectively) improved with a polynomial response with a peak at 25% ZBM and a linear increase with DBM up to 50% of FM. Histometric indices of the distal intestine showed improvements (p ≤ 0.001) in villus height, villus width, crypt depth and muscle thickness of fish fed DBM or ZBM compared to the control. In the meantime, there were no histological abnormalities in the liver sections. The replacement of FM with DBM or ZBM could modulated gut bacterial abundance, including total bacterial count, Escherichia coli, Bacillus subtilis, and Lactobacillus sp. The fish-fed DBM or ZBM-containing diets had higher (p ≤ 0.05) tolerances to salinity stress than the control group. In conclusion, DBM or ZBM could replace FM up to 50% and 25%, respectively with improved fish growth performance, FCR, gut histology and tolerance to salinity stress.

4.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 752-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305567

RESUMO

The current study aimed to evaluate growth performance, digestive enzyme activities, antioxidant status, nonspecific immune response and intestinal histological status of red tilapia fed Daphnia meal (DM) as a substitute for fishmeal (FM). Hybrid red tilapia (Oreochromis mossambicus × Oreochromis aureus) fry (0.54 ± 0.05 g fish-1) was allocated in nylon haba cages (100 fry m-3) for 2 weeks as an acclimation period. The fish were divided into five groups (three replicates each). The experimental diets were prepared by replacing FM with DM at concentrations of 25%, 50%, 75% and 100% respectively. The results indicated that fish fed increasing levels of DM (50%-75%) experienced high growth performance, feed utilisation and protein content. The activities of digestive enzymes were significantly increased in all groups fed DM diets compared to the control. The antioxidant balance was improved by decreasing the level of malondialdehyde and increased the total antioxidant capacity, catalase, superoxide dismutase and glutathione reductase activities in the liver of fish fed DM. The nonspecific immune response, including lysozyme, alkaline phosphatase activities and total protein level improved significantly with increasing FM substitution levels by DM in a dose-dependent manner. Histometric analysis of the intestinal wall revealed an increase in the villus length, crypts depth and goblet cells number in groups fed DM meal up to 50% substitution level compared to other treatments. It may be concluded from results of this feeding trial that in the aquaculture of hybrid tilapia, FM may be substituted with up to 50% DM without compromising intestinal health, growth performance and immune status of the fish.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Antioxidantes , Dieta , Intestinos , Tilápia , Animais , Ração Animal/análise , Dieta/veterinária , Tilápia/crescimento & desenvolvimento , Antioxidantes/metabolismo , Intestinos/efeitos dos fármacos , Digestão/efeitos dos fármacos
5.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350502

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Assuntos
Artrite Experimental , Opuntia , Ratos , Animais , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Glutaminase , Piroxicam/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Etanol/química , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Flavonoides/uso terapêutico
6.
Ann Hematol ; 103(5): 1423-1433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37405444

RESUMO

Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. ß-thalassemia (ß-T) is an autosomal recessive disorder leading to the development of anemia. ß-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. ß-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between ß-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the ß-T patients with COVID-19 revealed mild to moderate clinical features, and ß-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent ß-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend ß-T(NTDT), preclinical and clinical studies are recommended in this regard.


Assuntos
COVID-19 , Sobrecarga de Ferro , Talassemia beta , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , COVID-19/complicações , SARS-CoV-2 , Transfusão de Sangue , Sobrecarga de Ferro/etiologia
7.
Int Immunopharmacol ; 126: 111072, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006751

RESUMO

BACKGROUNDS: A worldwide coronavirus pandemic has affected many healthcare systems in 2019 (COVID-19). Following viral activation, cytokines and chemokines are released, causing inflammation and tissue death, particularly in the lungs, resulting in severe COVID-19 symptoms such as pneumonia and ARDS. COVID-19 induces the release of several chemokines and cytokines in different organs, such as the cardiovascular system and lungs. RESEARCH IDEA: COVID-19 and its more severe effects, such as an elevated risk of death, are more common in patients with metabolic syndrome and the elderly. Cytokine storm and COVID-19 severity may be mitigated by immunomodulation targeting NF-κB activation in conjunction with TNF- α -inhibition. In severe cases of COVID-19, inhibiting the NF-κB/TNF- α, the pathway may be employed as a therapeutic option. MATERIAL AND METHODS: The study will elaborate on the Egyptian pattern for COVID-19 patients in the first part of our study. An Egyptian patient with COVID-19 inflammatory profiling will be discussed in the second part of this article using approved marine drugs selected to inhabit the significant inflammatory signals. A biomarker profiling study is currently being performed on Egyptian patients with SARS-COV-2. According to the severity of the infection, participants were divided into four groups. The First Group was non-infected with SARS-CoV-2 (Control, n = 16), the Second Group was non-intensive care patients (non-ICU, n = 16), the Third Group was intensive care patients (ICU, n = 16), and the Fourth Group was ICU with endotracheal intubation (ICU + EI, n = 16). To investigate COVID-19 inflammatory biomarkers for Egyptian patients, several inflammatory, oxidative, antioxidant, and anti-inflammatory biomarkers were measured. The following are examples of blood tests: CRP, Ferritin, D-dimer, TNF-α, IL-8, IL-6., IL-Ib, CD8, NF-κB, MDA, and total antioxidants. RESULTS AND DISCUSSION: The results of the current study revealed many logical findings, such as the elevation of CRP, Ferritin, D-dimer, TNF- α, CD8, IL-6, IL-, NF-κB, and MDA. Where a significant increase showed in ICU group results (23.05 ± 0.30, 2.35 ± 0.86, 433.4 ± 159.3, 26.67 ± 3.51, 7.52 ± 1.48, 7.49 ± 1.04, 5.76 ± 1.31, 7.41 ± 0.73) respectively, and also ICU group results (54.75 ± 3.44, 0.65 ± 0.13, 460.2 ± 121.42, 27.43 ± 2.52, 8.63 ± 2.68, 10.65 ± 2.75, 5.93 ± 1.4, 10.64 ± 0.86) respectively, as well as ICU + EI group results (117.63 ± 11.89, 1.22 ± 0.65, 918.8 ± 159.27, 26.68 ± 2.00, 6.68 ± 1.08, 11.68 ± 6.16, 6.23 ± 0.07, 22.41 ± 1.39),respectively.The elevation in laboratory biomarkers of cytokines storm in three infected groups with remarkable increases in the ICU + EI group was due to the elevation of oxidative stress and inflammatory storm molecules, which lead to highly inflammatory responses, specifically in severe patients of COVID-19. Another approach to be used in the current study is investigating new computational drug compounds for SARS-COV-2 protective agents from the marine environment. The results revealed that (Imatinib and Indinavir) had the highest affinity toward Inflammatory molecules and COVID-19 proteins (PDB ID: -7CZ4 and 7KJR), which may be used in the future as possible COVID-19 drug candidates. CONCLUSION: The investigated inflammatory biomarkers in Egyptian COVID-19 patients showed a strong correlation between IL6, TNF-α, NF-κB, CRB, DHL, and ferritin as COVID-19 biomarkers and determined the severity of the infection. Also, the oxidative /antioxidant showed good biomarkers for infection recovery and progression of the patients.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Interleucina-6 , NF-kappa B , Fator de Necrose Tumoral alfa , Antioxidantes , Egito , Citocinas , Biomarcadores , Quimiocinas , Ferritinas
8.
ACS Omega ; 8(48): 45896-45905, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075807

RESUMO

Sesuvium sesuvioides was used to treat inflammation, arthritis, gout, and thyroid dysfunction. The current study evaluated the antihyperthyroidism effect of S. sesuvioides to consolidate its traditional use. High-performance liquid chromatography (HPLC) analysis of S. sesuvioides methanol extract revealed the presence of phenolics such as gallic acid (0.73 ppm/mg), benzoic acid (11.22 ppm/mg), p-coumaric acid (3.12 ppm/mg), ferulic acid (5.47 ppm/mg), cinnamic acid (3.54 ppm/mg), and sinapic acid (3.17 ppm/mg). In vivo hyperthyroidism was induced using thyroxine in vivo, which increased T3 (triiodothyronine), T4 (tetraiodothyronine), malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. However, it reduced thyroid stimulating hormone (TSH), superoxide dismutase (SOD), and reduced glutathione (GSH). S. sesuvioides methanol extract alleviated thyroxine-induced intoxication in a dose-dependent manner. At a 750 mg/kg (SsCr3) dose, it reduced T3, T4, MDA, IL-6, and TNF-α by 61.23, 41.29, 45.17, 44.66, and 62.03%, respectively, and elevated TSH, SOD, and GSH by 365.52, 94.45, and 95.12%, respectively, relative to the diseased group. Further confirmation was done by histopathological examination, which showed normal thyroid histology where follicles were filled with colloids with more cytoplasmic concentrations. This activity is undoubtedly correlated to the richness of the extract by phenolic acids, as revealed by HPLC. In silico ADME/TOPKAT prediction performed on the secondary metabolites identified in S. sesuvioides methanol extract revealed acceptable pharmacodynamic, pharmacokinetic, and toxicity potential. Thus, S. sesuvioides could serve as a promising source for alleviating hyperthyroidism, which could be further incorporated into pharmaceutical preparations.

9.
Pharmaceutics ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004612

RESUMO

Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.

10.
ACS Omega ; 8(41): 37971-37990, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867644

RESUMO

The pharmacological properties of seaweeds are diverse. No studies have been conducted on the protective effect of Galaxaura oblongata (GOE) against lippopolysaccharide (LPS)-induced inflammation in the brain. This study is divided into three phases, the first of which is the initial phase. In vitro study includes antioxidant, radical scavenging, and anti-inflammatory activities, including cyclooxygenase-1 (COX1), COX2, NO, acetylcholine inhibition, sphingosine kinase 1, tumor necrosis factor α (TNF-α), and interleukin-6, as well as antioxidant and radical-scavenging activities, including 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid. Using LPS-induced acute inflammation, the second phase was conducted in vivo. Antioxidant and anti-inflammatory assays were performed to investigate the protective role of GOE. In addition to the phytochemical analysis, the bioactive content of GOE was also investigated. In vitro results demonstrated the potential of GOE as an antioxidant, anti-inflammatory, and neuroprotective agent. A study using LPS as an induced lung injury and neuroinflammation model confirmed the in vitro results. The GOE significantly reduced inflammatory, oxidative, and neurodegenerative biomarkers based on histopathological and immuno-histochemistry results. Based on computational drug design, four target proteins were approved: nuclear factor κB, mitogen-activated protein kinases, TNF-α, and NLRP3. Using polyphenolic compounds in GOE as ligands demonstrated good alignment and affinity against the three proteins. Finally, the current study offers a new approach to developing drug leads considering GOE's protective and curative roles.

11.
DNA Repair (Amst) ; 131: 103564, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776841

RESUMO

The central dogma of molecular biology posits that genetic information flows unidirectionally, from DNA, to RNA, and finally to protein. However, this directionality is broken in some cases, such as reverse transcription where RNA is converted to DNA by retroviruses and certain transposable elements. Our genomes have evolved and adapted to the presence of reverse transcription. Similarly, our genome is continuously maintained by several repair pathways to reverse damage due to various endogenous and exogenous sources. More recently, evidence has revealed that RNA, while in certain contexts may be detrimental for genome stability, is involved in promoting certain types of DNA repair. Depending on the pathway in question, the size of these DNA repair-associated RNAs range from one or a few ribonucleotides to long fragments of RNA. Moreover, RNA is highly modified, and RNA modifications have been revealed to be functionally associated with specific DNA repair pathways. In this review, we highlight aspects of this unexpected layer of genomic maintenance, demonstrating how RNA may influence DNA integrity.


Assuntos
Dano ao DNA , RNA , Humanos , RNA/genética , Reparo do DNA , DNA/metabolismo , Proteínas , Instabilidade Genômica
12.
ACS Omega ; 8(35): 31928-31940, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692227

RESUMO

The genus Eremophila, despite comprising more than 250 species, has scarce literature studies that could be traced concerning the chemical profile and bioactivity of Eremophila purpurascens. The current study targets the investigation of the in vitro and in vivo anti-oxidant, anti-hyperglycemic, and hepatoprotective potential of the polyphenol-rich leaf extract of E. purpurascens (EP). EP showed promising total anti-oxidant capacity with IC50 values of 106 and 114 µg/mL in 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) and diphenyl-1-picrylhydrazyl (DPPH) assays, respectively, with total anti-oxidant capacities of 331, 245, and 1767 µmol/g in ABTS, DPPH, and ferric reducing anti-oxidant power assays, respectively. In HepG2 cells, pre-treated with CCl4, a dose of 100 µg/mL EP ameliorated the reduced superoxide dismutase and glutathione levels and total anti-oxidant capacity with values of 312.5 U/mL, 15.47 mg/dL, and 1.03 nmol/mL, respectively. In vitro anti-diabetic evaluation using 3T3-L1 adipocyte culture showed that at a dose of 30 µg/mL, the EP extract elicited a 6.3% decrease in the concentration of glucose (22.4 mmol/L), showing significant amelioration with regard to pioglitazone and insulin. EP also demonstrated elevated serum insulin by 77.78% with a marked reduction in fasting blood glucose level by 64.55% relative to the streptozotocin diabetic rats in vivo. EP also relieved the liver stress markers both in vitro in CCl4 and in vivo in tamoxifen (TAM) models. EP markedly decreased TAM toxicity, as demonstrated by the decline in the liver stress markers, ALT and AST, by 36.1 and 51.1%, respectively. It also relieved the oxidative stress triggered by TAM, as revealed by the reduction in the levels of TBARs and TNF-α by 21.4 and 40%, respectively. Liquid chromatography electrospray ionization mass spectrometry of EP revealed a total of twelve peaks belonging to phenylpropanoids, lignans, and phenolics, where verbascoside and pinoresinol-4-O-ß-d-glucoside represented the most abundant secondary metabolites. The docking experiment showed that tri-O-galloyl-hexoside had the best fitting within the NADPH oxidase active sites with binding energy (ΔG = -81.12 kcal/mol). Thus, the plant can be of beneficial value in the control of hyperglycemia in diabetic patients, besides its prophylactic potential against hepatic complications.

13.
Cell Mol Neurobiol ; 43(7): 3405-3416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540395

RESUMO

Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aß) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aß and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.


Assuntos
Doença de Alzheimer , Hipotireoidismo , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia
14.
Toxics ; 11(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624195

RESUMO

Insects are faced with numerous toxins (xenobiotics) as they go through life, some produced naturally by plants (sometimes called allelochemicals) and some produced by humans (insecticides) [...].

15.
Chem Biodivers ; 20(9): e202300349, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37574856

RESUMO

The current study aimed to evaluate the anti-inflammatory activity of Dicliptera bupleuroides Nees aerial parts methanol extract and its different fractions namely hexane, chloroform, ethyl acetate and butanol in vitro using cyclooxygenase inhibitory assay (COX-2). In vivo anti-inflammatory evaluation was performed using carrageenan and formalin induced inflammation in rat models followed by molecular docking. High performance liquid chromatography (HPLC) and gas chromatography coupled with mass chromatography (GC/MS) analyses were used for chemical analyses of the tested samples. The tested samples showed significant inhibition in COX-2 inhibitory assay where methanol extract (DBM) showed the highest inhibitory potential at 100 µg/mL estimated by 67.86 %. At a dose of 400 mg/kg, all of the examined samples showed pronounced results in carrageenan induced acute inflammation in rat model at 4th h interval with DBM showed the highest efficiency displaying 65.32 % inhibition as compared to the untreated rats. Formalin model was employed for seven days and DBM exhibited 65.33 % and 69.39 % inhibition at 200 and 400 mg/kg, respectively approaching that of the standard on the 7th day. HPLC revealed the presence of caffeic acid, gallic acid and sinapic acid, quercetin and myricetin in DBM. GC/MS analysis of its hexane fraction revealed the presence of 16 compounds belonging mainly to fatty acids and sterols that account for 85.26 % of the total detected compounds. Molecular docking showed that hexadecanoic acid followed by decanedioic acid and isopropyl myristate showed the best fitting within cyclooxygenase-II (COX-II) while nonacosane followed by hexatriacontane and isopropyl myristate revealed the most pronounced fitting within the 5-lipoxygenase (5-LOX) active sites. Absorption, metabolism, distribution and excretion and toxicity prediction (ADMET/ TOPKAT) concluded that most of the detected compounds showed reasonable pharmacokinetic, pharmacodynamic and toxicity properties that could be further modified to be more suitable for incorporation in pharmaceutical dosage forms combating inflammation and its undesirable consequences.


Assuntos
Hexanos , Extratos Vegetais , Ratos , Animais , Carragenina/análise , Carragenina/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão , Metanol/química , Simulação de Acoplamento Molecular , Prostaglandina-Endoperóxido Sintases/análise , Prostaglandina-Endoperóxido Sintases/uso terapêutico , Formaldeído/análise , Formaldeído/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Componentes Aéreos da Planta/química
16.
Environ Sci Pollut Res Int ; 30(34): 82162-82177, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37316629

RESUMO

The present study investigated the neuroprotective and nephroprotective effects of the sponge Ircinia sp. ethyl acetate extract (ISPE) against persistent aromatic pollutants in vitro and in vivo. Different exponential experimental assays were applied to this study. An in vitro study to investigate the potential therapeutic effect of ISPE using antioxidants (for example, ABTS and DPPH) and anti-Alzheimer assays (inhibition of acetylcholinesterase); the in-vivo study was designed to evaluate the protective effect of ISPE as neuroprotective and nephroprotective against the destructive effect of PAH. Several assays included oxidative assays (LPO), antioxidant biomarkers (GSH, GST), and inflammatory and neurodegenerative biomarkers (PTK,SAA). Additionally, the results were confirmed using histopathological examination. The in silico screening study improved the in vitro and in vivo findings through interaction between the aryl hydrocarbon receptor (AHR) and the polyphenolic content of ISPE extract, which was determined using LCMSM. The results and discussion showed that ISPE exhibited a promising antioxidant and anti-acetylcholinesterase activity as evidenced by IC50 values of 49.74, 28.25, and 0.18 µg/mL in DPPH, ABTS, and acetylcholinesterase inhibition assays, respectively. In vivo, the study showed that animals receiving ISPE before poly aromatic hydrocarbons administration PAHs (Prot, ISPE) showed significant amelioration in kidney functions manifested by the reduction of serum urea, uric acid, and creatinine by 40.6%, 66.4%, and 134.8%, respectively, concerning PAH-injected mice (HAA). Prot, ISPE revealed a decline in malondialdehyde (MDA) and total proteins (TP) in kidney and brain tissues by 73.63% and 50.21%, respectively, for MDA and 59.82% and 80.41%, respectively, for TP with respect to HAA. Prot, ISPE showed significant elevation in reduced glutathione (GSH) and glutathione transferase (GST) in kidney and brain tissues and reduction in the inflammatory and pre-cancerous biomarkers, namely, serum protein tyrosine kinases (PTKs) and serum amyloid A (SAA). These findings were further supported by histopathological examination of kidney and brain tissues, which revealed normal structure approaching normal control. Metabolic profiling of ISPE using LC-MS-MS showed the presence of fourteen polyphenolic compounds belonging mainly to phenolic acids and flavonoids. In silico study revealed that all the tested compounds exerted certain binding with the aryl hydrocarbon receptor, where rutin showed the best fitting (ΔG = - 7.6 kcal/mol-1) with considerable pharmacokinetic and pharmacodynamic properties revealed from in silico ADME (Absorption, Distribution, Metabolism, and Excretion) study. Hence, it can be concluded that the Ircinia sponge showed a promising protective effect versus kidney and brain toxicity triggered by PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poríferos , Camundongos , Animais , Antioxidantes/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo
18.
ACS Omega ; 8(21): 19037-19046, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273612

RESUMO

Marchantia species were traditionally used to treat liver failure. Marchantia polymorpha chloroform extract showed a marked hepatoprotective activity in a dose-dependent manner in paracetamol-induced extensive liver damage in mice. At a dose of 500 mg/kg (MP-500), it resulted in a reduction in aspartate transaminase by 49.44%, alanine transaminase by 44.11%, and alkaline phosphatase by 24.4% with significant elevation in total proteins by 58.69% with respect to the diseased group. It showed significant reductions in total bilirubin, total cholesterol, triglycerides, low density lipoprotein (LDL), very LDL, total lipids, and to high density lipoprotein ratio (CH/HDL) by 53.42, 30.14, 35.02, 45.79, 34.74, 41.45, and 49.52%, respectively, together with a 37.69% increase in HDL with respect to the diseased group. It also showed an elevation of superoxide dismutase by 28.09% and in glutathione peroxidase by 81.83% in addition to the reduction of lipid peroxidation by 17.95% as compared to the paracetamol only treated group. This was further supported by histopathological examination that showed normal liver architecture and a normal sinusoidal gap. Metabolic profiling by ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF/MS) led to the tentative identification of 28 compounds belonging to phenols, quinolones, phenylpropanoid, acylaminosugars, terpenoids, lipids, and fatty acids to which the activity was attributed. Four compounds were detected in the negative ionization mode which are neoacrimarine J, marchantin A, chitobiose, and phellodensin F, while the rest were detected in the positive mode. Thus, it can be concluded that this plant could serve as a valuable choice for the treatment of hepatotoxicity that further consolidated its traditional use.

19.
Foods ; 12(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238754

RESUMO

Pesticides are used on fruit and vegetable crops to obtain greater yield and quality. Residues can be detected in these crops or their products if applied pesticides do not degrade naturally. Therefore, this study aimed to estimate pesticide residues in some strawberry and tomato-based products available in the market for human consumption and associated dietary risks. Contamination with 3-15 pesticides in the tested samples was found. The total number of pesticides detected in the tested samples was 20, belonging to the group of insecticides (84%) and fungicides (16%). Pesticides of cypermethrin, thiamethoxam, chlorpyrifos, and lambda-cyhalothrin appeared at 100% in a number of samples, where the most detected was cypermethrin followed by thiamethoxam. The average values of pesticide residues detected in the tested samples ranged from 0.006 to 0.568 mg kg-1, where it was found that cypermethrin had the highest residue value and appeared in strawberry jam obtained from the market. The recovery rate of pesticides from fortified samples with pyrethroids ranged from 47.5% (fenvalerate) to 127% (lambda-cyhalothrin). Home processing of fortified tomato and strawberry samples had a significant effect on reducing residues in tomato sauce and strawberry jam, where the reduction reached 100%. The results of acute and chronic risk assessment showed that their values were much lower than 100%, indicating minimal risk of dietary intake.

20.
Materials (Basel) ; 16(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37049112

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) possess unique properties, making them a popular material across various industries. However, traditional methods of synthesizing ZnO-NPs are associated with environmental and health risks due to the use of harmful chemicals. As a result, the development of eco-friendly manufacturing practices, such as green-synthesis methodologies, has gained momentum. Green synthesis of ZnO-NPs using biological substrates offers several advantages over conventional approaches, such as cost-effectiveness, simplicity of scaling up, and reduced environmental impact. While both dried dead and living biomasses can be used for synthesis, the extracellular mode is more commonly employed. Although several biological substrates have been successfully utilized for the green production of ZnO-NPs, large-scale production remains challenging due to the complexity of biological extracts. In addition, ZnO-NPs have significant potential for photocatalysis and adsorption in the remediation of industrial effluents. The ease of use, efficacy, quick oxidation, cost-effectiveness, and reduced synthesis of harmful byproducts make them a promising tool in this field. This review aims to describe the different biological substrate sources and technologies used in the green synthesis of ZnO-NPs and their impact on properties. Traditional synthesis methods using harmful chemicals limit their clinical field of use. However, the emergence of algae as a promising substrate for creating safe, biocompatible, non-toxic, economic, and ecological synthesis techniques is gaining momentum. Future research is required to explore the potential of other algae species for biogenic synthesis. Moreover, this review focuses on how green synthesis of ZnO-NPs using biological substrates offers a viable alternative to traditional methods. Moreover, the use of these nanoparticles for industrial-effluent remediation is a promising field for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...