Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Rev Mol Diagn ; 24(8): 677-702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132997

RESUMO

INTRODUCTION: Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED: CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article  highlights the challenges and limitations of CRISPR systems. EXPERT OPINION: The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais , Edição de Genes , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/diagnóstico , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Medicina de Precisão/métodos , Terapia de Alvo Molecular
2.
Mol Biotechnol ; 66(3): 517-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37266832

RESUMO

Beta-thalassemia is one of the most common monogenic inherited disorders worldwide caused by different mutations in the hemoglobin subunit beta (HBB) gene. Genome-editing based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has raised the hope for life-long gene therapy of beta-thalassemia. In a proof-of-concept study, we describe the detailed design and assess the efficacy of a novel homology-directed repair (HDR)-based CRISPR construct for targeting the HBB locus. The selected sgRNAs were designed and cloned into an optimized CRISPR plasmid. The HDR donor templates containing a reporter and a selection marker flanked by the piggyBac Inverted Tandem Repeat (ITRs), the homology arms and the delta thymidine kinase (ΔTK) gene for negative selection were constructed. The efficiency of on-target mutagenesis by the eSpCas9/sgRNAs was assessed by mismatch assays. HDR-positive cells were isolated by treatment with G418 or selection based on truncated Neuron Growth Factor Receptor (tNGFR) expression using the Magnetic Activated Cell Sorting (MACS) method followed by ganciclovir (GCV) treatment to eliminate cells with random genomic integration of the HDR donor template. In-out PCR and sanger sequencing confirmed HDR in the isolated cells. Our data showed ~ 50% efficiency for co-transfection of CRISPR/donor template plasmids in HEK293 cells and following G418 treatment, the HDR efficiency was detected at ~ 37.5%. Moreover, using a clinically-relevant strategy, HDR events were validated after selection for tNGFR+ cells followed by negative selection for ΔTK by GCV treatment. Thus, our HDR-based gene-editing strategy could efficiently target the HBB locus and enrich for HDR-positive cells.


Assuntos
Sistemas CRISPR-Cas , Talassemia beta , Humanos , RNA Guia de Sistemas CRISPR-Cas , Células HEK293 , Talassemia beta/genética , Edição de Genes/métodos , Reparo de DNA por Recombinação
3.
Stem Cell Rev Rep ; 19(8): 2576-2596, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723364

RESUMO

Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Diferenciação Celular , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA