Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829482

RESUMO

Lung carcinoma is the major contributor to global cancer incidence and one of the leading causes of cancer-related mortality worldwide. Irregularities in signal transduction events, genetic alterations, and mutated regulatory genes trigger cancer development and progression. Selective targeting of molecular modulators has substantially revolutionized cancer treatment strategies with improvised efficacy. The aurora kinase B (AURKB) is a critical component of the chromosomal passenger complex and is primarily involved in lung cancer pathogenesis. Since AURKB is an important therapeutic target, the design and development of its potential inhibitors are attractive strategies. In this study, noscapine was selected and validated as a possible inhibitor of AURKB using integrated computational, spectroscopic, and cell-based assays. Molecular docking analysis showed noscapine occupies the substrate-binding pocket of AURKB with strong binding affinity. Subsequently, MD simulation studies confirmed the formation of a stable AURKB-noscapine complex with non-significant alteration in various trajectories, including RMSD, RMSF, Rg, and SASA. These findings were further experimentally validated through fluorescence binding studies. In addition, dose-dependent noscapine treatment significantly attenuated recombinant AURKB activity with an IC50 value of 26.6 µM. Cell viability studies conducted on A549 cells and HEK293 cells revealed significant cytotoxic features of noscapine on A549 cells. Furthermore, Annexin-PI staining validated that noscapine triggered apoptosis in lung cancer cells, possibly via an intrinsic pathway. Our findings indicate that noscapine-based AURKB inhibition can be implicated as a potential therapeutic strategy in lung cancer treatment and can also provide a novel scaffold for developing next-generation AURKB-specific inhibitors.

3.
Fitoterapia ; 173: 105811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168570

RESUMO

Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.


Assuntos
Infecções por Klebsiella , Pneumonia , Humanos , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Estrutura Molecular , Antibacterianos/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana
4.
Int J Biol Macromol ; 258(Pt 1): 128813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123032

RESUMO

Cell cycle regulators play pivotal roles as their dysregulation, leads to atypical proliferation and intrinsic genomic instability in cancer cells. Abnormal expression and functioning of Aurora kinase B (AURKB) are associated with cancer pathogenesis and thus exploited as a potential therapeutic target for the development of anti-cancer therapeutics. To identify effective AURKB inhibitors, a series of polyphenols was investigated to check their potential to inhibit recombinant AURKB. Their binding affinities were experimentally validated through fluorescence binding studies. Enzyme inhibition assay revealed that Mangiferin and Baicalin significantly inhibited AURKB activity with an IC50 values of 20.0 µM and 31.1 µM, respectively. To get atomistic insights into the binding mechanism, molecular docking and MD simulations of 100 ns were performed. Both compounds formed many non-covalent interactions with the residues of the active site pocket of AURKB. In addition, minimal conformational changes in the structure and formation of stable AURKB-ligand complex were observed during MD simulation analysis. Finally, cell-based studies suggested that Baicalin exhibited in-vitro cytotoxicity and anti-proliferative effects on lung cancer cell lines. Conclusively, Baicalin may be considered a promising therapeutic molecule against AURKB, adding an additional novel lead to the anti-cancer repertoire.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/uso terapêutico
5.
Oxid Med Cell Longev ; 2023: 2297559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155869

RESUMO

The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Fatores de Risco , COVID-19/complicações , Teste para COVID-19
6.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100604

RESUMO

Staphylococcus aureus is a major human pathogen responsible for a variety of clinical infections, becoming increasingly resistant to antibiotics. To address this challenge, there is a need to identify new cellular targets and innovative approaches to expand treatment options. One such target is thymidine kinase (TK), a crucial enzyme in the pyrimidine salvage pathway, which plays a key role in the phosphorylation of thymidine, an essential component in DNA synthesis and repair. In this study, we have successfully cloned, expressed, and purified the TK protein. A comprehensive investigation into how different pH levels affect the structure and functional activity of TK, using a combination of spectroscopy, classical molecular dynamics simulations, and enzyme activity assays was conducted. Our study revealed that variation in pH disrupts secondary and tertiary structures of TK with noticeable aggregate formation at pH 5.0. Enzyme activity studies demonstrated that TK exhibited its maximum kinase activity within the physiological pH range. These findings strongly suggest a connection between structural changes and enzymatic activity, which was further supported by the agreement between the spectroscopic features we measured and the results of our MD simulations. Our study provides a deeper insight into the structural features of TK, which could potentially be harnessed for the development of therapeutic strategies aimed at combatting infectious diseases. Conformational dynamics plays an essential role in the design and development of effective inhibitors. Considering the effects of pH on the conformational dynamics of TK, our findings may be implicated in the development of potent and selective inhibitors.Communicated by Ramaswamy H. Sarma.

7.
Environ Monit Assess ; 195(9): 1106, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642762

RESUMO

Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400-700 cm-1 and 1400-1600 cm-1. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26-32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m2/g of gallium oxide to 31 m2/g of gallium-indole, 35 m2/g of gallium-methyl indole, and 37 m2/g of gallium-carboxylic indole. XPS showed the presence of gallium (3-14%), oxygen (28-32%), nitrogen (23-46%), and carbon (9-46%). The gallium oxide and gallium hybrids showed 47-72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with R2 > 0.9.


Assuntos
Monitoramento Ambiental , Gálio , Fotólise , Indóis
8.
Environ Sci Pollut Res Int ; 30(38): 89395-89414, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37452253

RESUMO

Land use/land cover changes are occurring at an unprecedented rate and scale because of the economic development that has jeopardized the ecosystem's health. Ecosystem health should be studied and monitored at spatiotemporal scale to promote sustainable development and ecological civilization. The goal of this study was to assess the spatial ecosystem health of Langfang at the city and administrative levels using city's regional characteristics. Remote sensing-based pressure-state-response (PSR) framework, analytical hierarchy process (AHP), and principal component analysis (PCA) were utilized for spatial ecosystem health index (SEHI) formulation, indicator weighting, and indicator selection in several epochs (1990, 2003, 2013, and 2021), respectively. SEHI was formulated by combining subindices of pressure, state and response. The spatial ecosystem pressure index (SEIP) identified that the pressure was increasing on the ecosystem. In contrast, the spatial ecosystem state index (SEIS) pointed out an improvement in the state of the ecosystem since 1990. The worst state of the ecosystem was observed for the year 2013. The spatial ecosystem response index (SEIR) indicated that the response of the ecosystem towards the exerted pressures and states remained variable; however, it was reasonably good in 1990. All the administrative units of Langfang were associated with a healthy score for the spatial ecosystem health index (SEHI) for 1990 (pre-industrialization epoch), while the SEHI significantly reduced in 2013 (industrialization epoch) however improved for the later epochs (circular economy and ecological civilization epoch). The SEHI was moderately healthy for Dachang, Dacheng, Guan, Guangyang, and Yongqing while relatively healthy for the remaining administrative units in 2021. SEHI identified that spatial health has been improving since 2003 though not reaching the 1990's level for Langfang. Therefore, efforts should be focused on minimizing pressure and stabilizing the state to improve the spatial ecosystem health of Langfang. The developed SEHI can assist policymakers in analyzing regional health, identifying development strategies, driving environmental restoration, and quantifying needed changes.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Tecnologia de Sensoriamento Remoto , Cidades , China , Conservação dos Recursos Naturais
9.
Sci Total Environ ; 889: 164102, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207763

RESUMO

Wetland is an important feature of the landscape that provides beneficial services. However, with the ever-increasing heavy metal load, the quality of wetlands is deteriorating. Dongzhangwu Wetland in Hebei, China, was taken as our study site. It provides breeding and foraging grounds to migratory water birds such as Little Egret (Egretta garzetta), Great Egret (Ardea alba), and Grey Heron (Ardea cinerea). The current study aimed to quantify heavy metals exposure hazard and risk to the water migratory birds by employing a non-destructive approach. Oral intake was considered the main exposure route to calculate total exposure via multiple phases. The concentrations of Cr, Zn, Cu, Pb, As, Ni, Mn, and Cd were investigated in water, soil and food compartments of three different habitat components (Longhe River, Natural Pond and Fish Pond). The results showed: (1) The trend of potential daily dose (PDD) was Mn > Zn > Cr > Pb > Ni > Cu > As > Cd while for hazard quotient (HQ) was Cr > Pb > Cu > Zn > As > Ni > Mn > Cd, making Cr, Pb, Cu, Zn, and As the priority pollutants in all habitats, with Natural Pond eliciting the highest exposure. (2) The cumulative heavy metal exposure, explained by the integrated nemerow risk index, characterized all three habitats for all the birds in high exposure risk category. (3) The exposure frequency index identified that all the birds are frequently exposed to heavy metals from multiple phases in all three habitats. (4) Little Egret is at the highest pedagogy of exposure from single or multiple heavy metal(s) in all three habitats. A rigorous management plan for identified priority pollutants is required to improve wetland functioning and ecological services. Decision-makers could use the developed tissue residue objectives for protecting Egret species in Dongzhangwu Wetland as benchmarks.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Animais , Ecossistema , Áreas Alagadas , Monitoramento Ambiental/métodos , Cádmio , Chumbo , Metais Pesados/análise , Aves , Medição de Risco , China , Poluentes Químicos da Água/análise
10.
Int J Biol Macromol ; 230: 123259, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641018

RESUMO

Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo
11.
Proteins ; 90(1): 3-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288118

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), employs ten enzymes including imidazoleglycerol-phosphate dehydratase (IGPD) for de novo biosynthesis of histidine. The absence of histidine-biosynthesis in humans combined with its essentiality for Mtb makes the enzymes of this pathway major anti-TB drug targets. We explored the inhibitory potential of a small molecule ß-(1,2,4-Triazole-3-yl)-DL-alanine (DLA) against Mtb IGPD. DLA exhibits an in vitro inhibitory efficacy in the lower micromolar range. Higher-resolution crystal structures of native and substrate-bound Mtb IGPD provided additional structural features of this important drug target. Crystal structure of IGPD-DLA complex at a resolution of 1.75 Å, confirmed that DLA locks down the function of the enzyme by binding in the active site pocket of the IGPD mimicking the substrate-binding mode to a high degree. In our biochemical study, DLA showed an efficient inhibition of Mtb IGPD. Furthermore, DLA also showed bactericidal activity against Mtb and Mycobacterium smegmatis and inhibited their growth in respective culture medium. Importantly, owing to the favorable ADME and physicochemical properties, it serves as an important lead molecule for further derivatizations.


Assuntos
Antibacterianos , Proteínas de Bactérias , Hidroliases , Mycobacterium tuberculosis , Triazóis , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Triazóis/química , Triazóis/metabolismo , Tuberculose/microbiologia
12.
Commun Biol ; 4(1): 410, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767335

RESUMO

Intracellular pathogens including Mycobacterium tuberculosis (Mtb) have evolved with strategies to uptake amino acids from host cells to fulfil their metabolic requirements. However, Mtb also possesses de novo biosynthesis pathways for all the amino acids. This raises a pertinent question- how does Mtb meet its histidine requirements within an in vivo infection setting? Here, we present a mechanism in which the host, by up-regulating its histidine catabolizing enzymes through interferon gamma (IFN-γ) mediated signalling, exerts an immune response directed at starving the bacillus of intracellular free histidine. However, the wild-type Mtb evades this host immune response by biosynthesizing histidine de novo, whereas a histidine auxotroph fails to multiply. Notably, in an IFN-γ-/- mouse model, the auxotroph exhibits a similar extent of virulence as that of the wild-type. The results augment the current understanding of host-Mtb interactions and highlight the essentiality of Mtb histidine biosynthesis for its pathogenesis.


Assuntos
Histidina/biossíntese , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Animais , Feminino , Histidina/deficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Coelhos , Transdução de Sinais , Células THP-1 , Virulência
13.
Int J Phytoremediation ; 23(9): 899-910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395533

RESUMO

Maize (Zea mays L.) is considered as a potential energy-yielding crop which may respond to compost application for arsenic (As) phytoremediation depending on soil type and compost application levels in soil. Here, we explored compost-mediated As phytoremediation potential of maize in the two different textured soils (sandy loam soil and clay loam soil) at varying As (0-120 mg kg-1) and compost (0-2.5%) levels under glasshouse conditions. Results revealed that in the absence of compost maize plants grown at different soil As levels (0-120 mg kg-1) accumulated 1.20-1.71 times more As from sandy loam soil than that of clay loam soil. The compost addition in soil at all levels, with 120 mg kg-1 As enhanced As accumulation in maize plants in the clay loam soil by 13%, while it reduced As phyto-uptake by 27% in sandy loam soil. This may be due to an increase in phosphate-extractable (bioavailable) soil As content from 2.7 to 3.8 mg kg-1 in clay loam soil. The estimated daily intake (EDI) of As (0.03-0.15 µg g-1 of body weight day-1) was above the US EPA's standard value. Arsenic phytoremediation potential of the maize plants was found to be economical for sandy loam soil with 1% compost level and for clay loam soil at 2.5% compost level, suggesting soil type specific dose dependence of compost for As phytoremediation programs. Novelty statement: To our knowledge, the role of compost in economic feasibility of energy crops at contaminated soils in general, and in the growing of maize at As-contaminated soil in particular, has not been addressed, so far. Moreover, it is the first time to evaluate environmental and health risk of compost-mediated As phytoremediation in different soil types.This study provided new insights of economic evaluation and risk assessment in the phytoremediation and mechanisms of compost in biomass production of energy crop at different As concentration. These aspects in phytoremediation studies are imperative to understand for developing safe, cost-effective and soil specific remediation strategies.


Assuntos
Arsênio , Compostagem , Poluentes do Solo , Biodegradação Ambiental , Estudos de Viabilidade , Medição de Risco , Solo , Poluentes do Solo/análise , Zea mays
14.
Environ Sci Pollut Res Int ; 27(2): 1569-1584, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31749014

RESUMO

High concentrations of heavy metals in the environment threaten the quality of ecosystems and the health of human beings and animals. Giant panda (Ailuropoda melanoleuca), which is endemic to China and a global conservation icon, has the largest density in the Qinling Mountains. This paper investigated the spatiotemporal variation of heavy metal concentrations in soil (N = 44) at the regional scale with three zones of urban areas, mountain edges, and central mountains, the temporal variation of heavy metal concentrations in three bamboo species (N = 19) and two types of feces (N = 10), and assessed the ecological risk and health risk for giant pandas and their habitat in the Qinling Mountains. The results showed that the median concentrations of studied eight heavy metals mercury (Hg), arsenic (As), copper (Cu), manganese (Mn), zinc (Zn), chromium (Cr), lead (Pb), and cadmium (Cd) in soil exceeded the background values of Shaanxi Province except Pb. The median concentrations of Hg, Zn, Cr, Pb, and Cd in bamboo surpassed the reference standard (RS) of national food safety limits in vegetables for human intake, but the concentration of Zn was within the nutrient range in the bamboo plants. Heavy metals were enriched more in feces of captive than the wild giant pandas, which illustrated either higher ingestion or lower digestibility for captive giant panda. Ecological risk assessment of soil by the geo-accumulation index (Igeo) and risk index (RI) showed strong pollution by Hg and moderate pollution by Cd. Health risk assessment by the hazard index (HI) showed a potential to strong risk for giant pandas exposed to Pb, As, and Hg. In addition, the concentrations of heavy metals in feces showed a higher exposure risk for captive giant pandas than wild giant pandas. We suggest that attention should be paid to and all effective measurements should be taken for reducing the emission of Hg, As, Pb, and Cd in the study area.


Assuntos
Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Ursidae , Animais , China , Humanos , Medição de Risco , Solo
15.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 9): 558-566, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198888

RESUMO

Bacterioferritins (Bfrs) are ferritin-like molecules with a hollow spherical 24-mer complex design that are unique to bacterial and archaeal species. They play a critical role in storing iron(III) within the complex at concentrations much higher than the feasible solubility limits of iron(III), thus maintaining iron homeostasis within cells. Here, the crystal structure of bacterioferritin from Achromobacter (Ach Bfr) that crystallized serendipitously during a crystallization attempt of an unrelated mycobacterial protein is reported at 1.95 Šresolution. Notably, Fe atoms were bound to the structure along with a porphyrin ring sandwiched between the subunits of a dimer. Furthermore, the dinuclear ferroxidase center of Ach Bfr has only a single iron bound, in contrast to the two Fe atoms in other Bfrs. The structure of Ach Bfr clearly demonstrates the substitution of a glutamate residue, which is involved in the interaction with the second Fe atom, by a threonine and the consequent absence of another Fe atom there. The iron at the dinuclear center has a tetravalent coordination, while a second iron with a hexavalent coordination was found within the porphyrin ring, generating a heme moiety. Achromobacter spp. are known opportunistic pathogens; this structure enhances the current understanding of their iron metabolism and regulation, and importantly will be useful in the design of small-molecule inhibitors against this protein through a structure-guided approach.


Assuntos
Achromobacter/química , Proteínas de Bactérias/química , Ceruloplasmina/química , Grupo dos Citocromos b/química , Ferritinas/química , Heme/química , Ferro/química , Porfirinas/química , Achromobacter/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/metabolismo , Ferro/metabolismo , Modelos Moleculares , Porfirinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
Cureus ; 9(7): e1465, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28936377

RESUMO

Gastrointestinal perforation is a common complication arising due to homicidal injuries, trauma or intake of medications like aspirin. Intestinal perforation caused by chronic intake of mud, clay or soil is a rare phenomenon and very few cases have been reported in the literature. We hereby present the first case of rectosigmoid perforation from Pakistan which was caused by chronic mud intake in a female patient. Diagnosis of this condition in its early stage is important because it can be fatal if not addressed urgently.

17.
Cureus ; 9(6): e1331, 2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28698831

RESUMO

OBJECTIVE: Soft tissue injuries at the level of lower extremities, plantar, and dorsal foot pose a surgical challenge for reconstructive surgeons. This kind of injury commonly occurs when lower limbs get stuck in between the spokes of the wheel. Reverse sural artery flap has been proven to be an effective option to cover such defects. The aim of this study is to analyze the demographic variables of affected individuals, technical aspects of reverse sural artery flap, quantify the effectiveness of reverse sural artery flap among various treatment options available, and to study the outcome of injury. METHODS: A total of 49 patients who presented during a period of six years from January 2010 to January 2016 were included in the study. The data was collected using patient's charts, by interviewing the patients, and from hospital records. The patients' wounds were prepared, examined, and the injury was graded depending upon the extent of tissue damage. Tendon and bone defects were repaired, and wounds were closed by either split thickness skin graft or reverse sural artery flaps. RESULTS: Children were the most commonly affected with no conclusive gender trend. The posterolateral part of the heel of the right foot was the most frequently injured part (69%). Surgical interventions together with proper postoperative care and follow-up produced very good results overall. CONCLUSION: Wheel spoke injuries of the heel can be managed without significant morbidity if the patient presents early, the wound is assessed properly, suitable surgical technique is utilized, and good postoperative care is provided.

18.
J Biol Chem ; 292(27): 11326-11335, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28515317

RESUMO

Mycobacterium tuberculosis causes tuberculosis in humans and predominantly infects alveolar macrophages. To survive inside host lesions and to evade immune surveillance, this pathogen has developed many strategies. For example, M. tuberculosis uses host-derived lipids/fatty acids as nutrients for prolonged persistence within hypoxic host microenvironments. M. tuberculosis imports these metabolites through its respective transporters, and in the case of host fatty acids, a pertinent question arises: does M. tuberculosis have the enzyme(s) for cleavage of fatty acids from host lipids? We show herein that a previously uncharacterized membrane-associated M. tuberculosis protein encoded by Rv2672 is conserved exclusively in actinomycetes, exhibits both lipase and protease activities, is secreted into macrophages, and catalyzes host lipid hydrolysis. In light of these functions, we annotated Rv2672 as mycobacterial secreted hydrolase 1 (Msh1). Furthermore, we found that this enzyme is up-regulated both in an in vitro model of hypoxic stress and in a mouse model of M. tuberculosis infection, suggesting that the pathogen requires Msh1 under hypoxic conditions. Silencing Msh1 expression compromised the ability of M. tuberculosis to proliferate inside lipid-rich foamy macrophages but not under regular culture conditions in vitro, underscoring Msh1's importance for M. tuberculosis persistence in lipid-rich microenvironments. Of note, this is the first report providing insight into the mechanism of host lipid catabolism by an M. tuberculosis enzyme, augmenting our current understanding of how M. tuberculosis meets its nutrient requirements under hypoxic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Células Espumosas/metabolismo , Células Espumosas/microbiologia , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/enzimologia , Animais , Hipóxia Celular , Células Espumosas/patologia , Metabolismo dos Lipídeos , Camundongos , Mycobacterium tuberculosis/patogenicidade , Células RAW 264.7 , Tuberculose/genética , Tuberculose/patologia
19.
Cureus ; 9(11): e1812, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29308340

RESUMO

Intensive care unit (ICU) sepsis in patients is a common clinical practice primarily in the tertiary care settings. Multidrug resistance to pathogens causing ICU sepsis is widespread, and it poses a severe threat to physicians in terms of managing their patients. At times, physicians get exposed to a pathogen they have never encountered before. Burkholderia cepacia infection in immunocompetent patients is rare. This infection is common in patients with immunocompromised immunity and cystic fibrosis. We report a case of a 34-year-old female who was diagnosed with ceftazidime-resistant Burkholderia cepacia in an ICU setting. This is the first case of drug-resistant Burkholderia cepacia reported from Pakistan.

20.
Int J Phytoremediation ; 19(7): 605-613, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-27849143

RESUMO

In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L-1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g-1, respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R2 = 0.97) and O-mont (R2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH2, and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Musa/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Bentonita , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Soluções , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...