Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Curr Org Synth ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38712369

RESUMO

In this work, a series of novel 3-(halophenyl)-1-phenyl-1H-pyrazole moieties have been synthesized. Their structures were characterized by IR, NMR, and MS spectroscopy, and the corresponding antitumor properties were also studied. OBJECTIVES: This study aimed to synthesize a series of new 3-(halophenyl)-1-phenyl-1Hpyrazole moieties and survey the antitumor properties of these compounds. MATERIALS AND METHODS: 3-(halophenyl)-1-phenyl-1H-pyrazoles (4a-j) were prepared by reaction of phenyl hydrazine (3) with different halogen aromatic aldehydes (1a-j) and malononitrile (2) in C2H5OH and piperidine. The reaction took place under microwave irradiation settings for two minutes at140°C. RESULTS: Three human cancer cell lines were used as in vitro test subjects for compounds 4a - j. Three cell lines from mammals HeLa (a cell line for human cervical cancer), MCF-7 (a cell line for human breast cancer), and PC-3 (a cell line for human prostate cancer), all with 5- fluorouracil as the standard reference drug were used. CONCLUSION: A series of novel 3-(halophenyl)-1-phenyl-1H-pyrazoles were synthesized in this work. All substances had their anticancer properties assessed.

2.
Sci Rep ; 14(1): 9862, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684707

RESUMO

The process of creating a series of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-q) involved reacting 6-methoxynaphthalen-2-ol (1), the appropriate aromatic aldehydes (2a-q), and malononitrile (3) in an absolute ethanol/piperidine solution under Ultrasonic irradiation. However, the attempt to create 3-amino-1-aryl-1H-benzo[f]chromene-2,8-dicarbonitrile (6a, d, e) was unsuccessful when 6-cyanonaphthalen-2-ol (5) was stirred at room temperature, reflux, Microwave irradiation, or Ultrasonic irradiation. In addition, the target molecules were screened against Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli and Klebsiella pneumonia, as well as a panel of three human cancer cells lines such as MCF-7, HCT-116, HepG-2 and two normal cell lines HFL-1 and WI-38. The obtained results confirmed that the pyran derivatives (4 m, i, k) which have a double chlorine at 3,4/2,3/2,5-positions, a single halogen atom 3-Cl/4-Br (4c, e) and a double bromine at 3,5-positions with a single methoxy group at 2-position (4n), of phenyl ring, and, to a lesser extent, other pyran derivatives with monoihalogenated (4a, b, d, f), dihalogenated (4 g, h, j, l) or trisubstituent phenyl ring (4o, p, q). Furthermore, compounds 4b-e, g, i, j, m, and n showed negligible activity against the two normal cell lines, HFL-1 and WI-38. Moreover, compound 4 g exhibited the strongest antimicrobial activity among the other pyran derivatives (4a-f, g-q) when compared to Ciprofloxacin. The MIC was assessed and screened for compound 4 g, revealing bactericidal effects. Lastly, SAR and molecular docking were studied.


Assuntos
Antineoplásicos , Testes de Sensibilidade Microbiana , Piranos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Piranos/farmacologia , Piranos/química , Piranos/síntese química , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Simulação de Acoplamento Molecular , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Relação Estrutura-Atividade , Escherichia coli/efeitos dos fármacos
3.
Front Vet Sci ; 11: 1357947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496314

RESUMO

Toxoplasmosis continues to be a prevalent parasitic zoonosis with a global distribution. This disease is caused by an intracellular parasite known as Toxoplasma gondii, and the development of effective novel drug targets to combat it is imperative. There is limited information available on the potential advantages of wheat germ oil (WGO) and propolis, both individually and in combination, against the acute phase of toxoplasmosis. In this study, acute toxoplasmosis was induced in Swiss albino mice, followed by the treatment of infected animals with WGO and propolis, either separately or in combination. After 10 days of experimental infection and treatment, mice from all groups were sacrificed, and their brains, uteri, and kidneys were excised for histopathological assessment. Additionally, the average parasite load in the brain was determined through parasitological assessment, and quantification of the parasite was performed using Real-Time Polymerase Chain Reaction targeting gene amplification. Remarkably, the study found that treating infected animals with wheat germ oil and propolis significantly reduced the parasite load compared to the control group that was infected but not treated. Moreover, the group treated with a combination of wheat germ oil and propolis exhibited a markedly greater reduction in parasitic load compared to the other groups. Similarly, the combination treatment effectively restored the histopathological changes observed in the brain, uterus, and kidney, and the scoring of these reported lesions confirmed these findings. In summary, the present results reveal intriguing insights into the potential therapeutic benefits of wheat germ oil and propolis in the treatment of acute toxoplasmosis.

4.
Sci Rep ; 14(1): 7589, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555345

RESUMO

P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 µM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.


Assuntos
Antineoplásicos , Oxigênio , Humanos , Células MCF-7 , Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia
5.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490063

RESUMO

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Neuroproteção , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
6.
Bioorg Chem ; 145: 107244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428284

RESUMO

Complications of the worldwide use of non-steroidal anti-inflammatory drugs (NSAIDs) sparked scientists to design novel harmless alternatives as an urgent need. So, a unique hybridization tactic of quinoline/pyrazole/thioamide (4a-c) has been rationalized and synthesized as potential COX-2/15-LOX dual inhibitors, utilizing relevant reported studies on these pharmacophores. Moreover, we extended these preceding hybrids into more varied functionality, bearing crucial thiazole scaffolds(5a-l). All the synthesized hybrids were evaluatedin vitroas COX-2/15-LOX dual inhibitors. Initially, series4a-cexhibited significant potency towards 15-LOX inhibition (IC50 = 5.454-4.509 µM) compared to meclofenamate sodium (IC50 = 3.837 µM). Moreover, they revealed reasonable inhibitory activities against the COX-2 enzyme in comparison to celecoxib.Otherwise, conjugates 5a-ldisclosed marked inhibitory activity against 15-LOX and strong inhibitory to COX-2. In particular, hybrids5d(IC50 = 0.239 µM, SI = 8.95), 5h(IC50 = 0.234 µM, SI = 20.35) and 5l (IC50 = 0.201 µM, SI = 14.42) revealed more potency and selectivity outperforming celecoxib (IC50 = 0.512 µM, SI = 4.28). In addition, the most potentcompounds, 4a, 5d, 5h, and 5l have been elected for further in vivoevaluation and displayed potent inhibition of edema in the carrageenan-induced rat paw edema test that surpassed indomethacin. Further, compounds5d, 5h, and 5l decreased serum inflammatory markers including oxidative biomarkersiNO, and pro-inflammatory mediators cytokines like TNF-α, IL-6, and PGE. Ulcerogenic liability for tested compounds demonstrated obvious gastric mucosal safety. Furthermore, a histopathological study for compound 5l suggested a confirmatory comprehensive safety profile for stomach, kidney, and heart tissues. Docking and drug-likeness studies offered a good convention with the obtained biological investigation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Quinolinas , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Celecoxib/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Relação Estrutura-Atividade , Estrutura Molecular
7.
Bioorg Chem ; 145: 107235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447464

RESUMO

Protein kinase dysregulation was strongly linked to cancer pathogenesis. Moreover, histone alterations were found to be among the most important post-translational modifications that could contribute to cancer growth and development. In this context, haspin, an atypical serine/threonine kinase, phosphorylates histone H3 at threonine-3 and is notably overexpressed in various common cancer types. Herein, we report novel 5-(4-pyridinyl)indazole derivatives as potent and selective haspin inhibitors. Amide coupling at N1 of the indazole ring with m-hydroxyphenyl acetic acid yielded compound 21 with an IC50 value of 78 nM against haspin. This compound showed a meaningful selectivity over 15 of the most common off-targets, including Clk 1-3 and Dyrk1A, 1B, and 2. The most potent haspin inhibitors 5 and 21 effectively inhibited the growth of the NCI-60 cancer cell lines, further emphasizing the success of our scaffold as a new selective lead for the development of anti-cancer therapeutic agents.


Assuntos
Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Indazóis/farmacologia , Proteínas Serina-Treonina Quinases , Histonas/metabolismo , Fosforilação , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia
8.
Arch Pharm (Weinheim) ; : e2400020, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478964

RESUMO

Haspin and Clk4 are both understudied protein kinases (PKs), offering potential targets for the development of new anticancer agents. Thus, the identification of new inhibitors targeting these PKs is of high interest. However, the inhibitors targeting haspin or Clk4 developed to date show a poor selectivity profile over other closely related PKs, increasing the risk of side effects. Herein, we present two newly developed N1 -benzyolated 5-(4-pyridinyl)indazole-based inhibitors (18 and 19), derived from a newly identified indazole hit. These inhibitors exhibit an exceptional inhibitory profile toward haspin and/or Clk4. Compound 18 (2-acetyl benzoyl) showed a preference to inhibit Clk4 and haspin over a panel of closely related kinases, with sixfold selectivity for Clk4 (IC50 = 0.088 and 0.542 µM, respectively). Compound 19 (4-acetyl benzoyl) showed high selectivity against haspin over the common off-target kinases (Dyrks and Clks) with an IC50 of 0.155 µM for haspin. Molecular docking studies explained the remarkable selectivity of 18 and 19, elucidating how the new scaffold can be modified to toggle between inhibition of haspin or Clk4, despite the high homology of the ATP-binding sites. Their distinguished profile allows these compounds to be marked as interesting chemical probes to assess the selective inhibition of haspin and/or Clk4.

9.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422592

RESUMO

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Proteína Tirosina Quinase CSK/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinases da Família src , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia
10.
Arch Pharm (Weinheim) ; 357(4): e2300656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304944

RESUMO

Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Relação Estrutura-Atividade , Bactérias , Pirimidinas/farmacologia , Testes de Sensibilidade Microbiana
11.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004458

RESUMO

CDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide. The available therapeutic options suffer from many drawbacks including high toxicity and decreased specificity. Therefore, there is a need for more effective and safer therapeutic agents. A series of new pyrazolo[3,4-d]pyrimidine analogs was designed, synthesized, and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2, respectively. Pyrazolo[3,4-d]pyrimidinone derivatives bearing N5-2-(4-halophenyl) acetamide substituents were identified as the most potent amongst evaluated compounds. Further evaluation of CDK2 kinase inhibition of two potential cytotoxic compounds 4a and 4b confirmed their CDK2 inhibitory activity. Compound 4a was more potent than the reference roscovitine regarding the CDK2 inhibitory activity (IC50 values: 0.21 and 0.25 µM, respectively). In silico molecular docking provided insights into the molecular interactions of compounds 4a and 4b with important amino acids within the ATP-binding site of CDK2 (Ile10, Leu83, and Leu134). Overall, compounds 4a and 4b were identified as interesting CDK2 inhibitors eliciting antiproliferative activity against the CRC and HCC cells, HCT116 and HepG2, respectively, for future further investigations and development.

12.
J Med Chem ; 66(22): 15189-15204, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37940118

RESUMO

EPI-X4, a natural peptide CXCR4 antagonist, shows potential for treating inflammation and cancer, but its short plasma stability limits its clinical application. We aimed to improve the plasma stability of EPI-X4 analogues without compromising CXCR4 antagonism. Our findings revealed that only the peptide N-terminus is prone to degradation. Consequently, incorporating d-amino acids or acetyl groups in this region enhanced peptide stability in plasma. Notably, EPI-X4 leads 5, 27, and 28 not only retained their CXCR4 binding and antagonism but also remained stable in plasma for over 8 h. Molecular dynamic simulations showed that these modified analogues bind similarly to CXCR4 as the original peptide. To further increase their systemic half-lives, we conjugated these stabilized analogues with large polymers and albumin binders. These advances highlight the potential of the optimized EPI-X4 analogues as promising CXCR4-targeted therapeutics and set the stage for more detailed preclinical assessments.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/metabolismo , Peptídeos/química , Receptores CXCR4/metabolismo , Albuminas/metabolismo , Transdução de Sinais , Aminas/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834474

RESUMO

Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Receptores ErbB/metabolismo , Proliferação de Células , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antimetabólitos/farmacologia , Pirimidinas/farmacologia , Pirimidinas/química , Estrutura Molecular , Linhagem Celular Tumoral
14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765073

RESUMO

Phosphodiesterase 5 (PDE5) inhibitors presented themselves as important players in the nitric oxide/cGMP pathway, thus exerting a profound impact on various physiological and pathological processes. Beyond their well-known efficacy in treating male erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), a plethora of studies have unveiled their significance in the treatment of a myriad of other diseases, including cognitive functions, heart failure, multiple drug resistance in cancer therapy, immune diseases, systemic sclerosis and others. This comprehensive review aims to provide an updated assessment of the crucial role played by PDE5 inhibitors (PDE5-Is) as disease-modifying agents taking their limiting side effects into consideration. From a medicinal chemistry and drug discovery perspective, the published PDE5-Is over the last 10 years and their binding characteristics are systemically discussed, and advancement in properties is exposed. A persistent challenge encountered with these agents lies in their limited isozyme selectivity; considering this obstacle, this review also highlights the breakthrough development of the recently reported PDE5 allosteric inhibitors, which exhibit an unparalleled level of selectivity that was rarely achievable by competitive inhibitors. The implications and potential impact of these novel allosteric inhibitors are meticulously explored. Additionally, the concept of multi-targeted ligands is critically evaluated in relation to PDE5-Is by inspecting the broader spectrum of their molecular interactions and effects. The objective of this review is to provide insight into the design of potent, selective PDE5-Is and an overview of their biological function, limitations, challenges, therapeutic potentials, undergoing clinical trials, future prospects and emerging uses, thus guiding upcoming endeavors in both academia and industry within this domain.

15.
Eur J Med Chem ; 261: 115789, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37717380

RESUMO

The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC50 values of 9.8-12.2 µM. Compounds 15, 16 and 21 showed equipotent inhibition of the C115D MurA mutant developed by fosfomycin-resistant Escherichia coli. NMR binding studies revealed that some of the MurA residues targeted by 15 also interacted with fosfomycin, but not all, indicating an overlapping but not identical binding site. The antibacterial activity of the compounds against E. coli ΔtolC suggests that inhibition of MurA accounts for the observed effect on bacterial growth, considering that a few potent MurA inhibitors could not penetrate the bacterial outer membrane and were therefore inactive as proven by the bacterial cell uptake assay. The most promising compounds were also evaluated against a panel of Gram-positive bacteria. Remarkably, compounds 21 and 31 (MurA IC50 = 9.8 and 10.2 µM respectively) exhibited a potent activity against Clostridioides difficile strains with MIC values ranging from 0.125 to 1 µg/mL, and were also shown to be bactericidal with MBC values between 0.25 and 1 µg/mL. Furthermore, both compounds were shown to have a limited activity against human normal intestinal flora and showed high safety towards human colon cells (Caco-2) in vitro. The thiolactone derivative (compound 5) exhibited an interesting broad spectrum antibacterial activity despite its weak MurA inhibition. Altogether, the presented series provides a promising class of antibiotics that merits further investigation.


Assuntos
Alquil e Aril Transferases , Fosfomicina , Humanos , Fosfomicina/farmacologia , Escherichia coli , Células CACO-2 , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana
16.
Br J Haematol ; 203(3): 477-480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37612131

RESUMO

Colony-stimulating factor 3 (CSF3) is a key factor in neutrophil production and function, and recombinant forms have been used clinically for decades to treat congenital and acquired neutropenia. Although biallelic inactivation of its receptor CSF3R is a well-established cause of severe congenital neutropenia (SCN), no corresponding Mendelian disease has been ascribed to date to CSF3. Here, we describe three patients from two families each segregating a different biallelic inactivating variant in CSF3 with SCN. Complete deficiency of CSF3 as a result of nonsense-mediated decay (NMD) could be demonstrated on RT-PCR using skin fibroblasts-derived RNA. The phenotype observed in this cohort mirrors that documented in mouse and zebrafish models of CSF3 deficiency. Our results suggest that CSF3 deficiency in humans causes a novel autosomal recessive form of SCN.

17.
Mol Genet Genomic Med ; 11(12): e2256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37592902

RESUMO

BACKGROUND: Very long-chain fatty acids (VLCFAs) composed of more than 20 carbon atoms are essential in the biosynthesis of cell membranes in the brain, skin, and retina. VLCFAs are elongated beyond 28 carbon atoms by ELOVL4 enzyme. Variants in ELOVL4 are associated with three Mendelian disorders: autosomal dominant (AD) Stargardt-like macular dystrophy type 3, AD spinocerebellar ataxia, and autosomal recessive disorder congenital ichthyosis, spastic quadriplegia and impaired intellectual development (ISQMR). Only seven subjects from five unrelated families with ISQMR have been described, all of which have biallelic single-nucleotide variants. METHODS: We performed clinical exome sequencing on probands from four unrelated families with neuro-ichthyosis. RESULTS: We identified three novel homozygous ELOVL4 variants. Two of the families originated from the same Saudi tribe and had the exact homozygous exonic deletion in ELOVL4, while the third and fourth probands had two different novel homozygous missense variants. Seven out of the eight affected subjects had profound developmental delay, epilepsy, axial hypotonia, peripheral hypertonia, and ichthyosis. Delayed myelination and corpus callosum hypoplasia were seen in two of five subjects with brain magnetic rosonance imaging and cerebral atrophy in three. CONCLUSION: Our study expands the allelic spectrum of ELOVL4-related ISQMR. The detection of the same exonic deletion in two unrelated Saudi family from same tribe suggests a tribal founder mutation.


Assuntos
Ictiose Lamelar , Ictiose , Degeneração Macular , Humanos , Mutação , Degeneração Macular/genética , Retina/metabolismo , Ictiose/genética , Carbono , Proteínas do Olho/genética , Proteínas de Membrana/genética
18.
Vet World ; 16(7): 1562-1571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621528

RESUMO

Background and Aim: Subclinical mastitis (SCM) caused by erythromycin-resistant Staphylococcus aureus is a significant disease in lactating animals. Therefore, it is crucial to understand the genetic factors contributing to erythromycin resistance in S. aureus. This study aimed to estimate the prevalence of S. aureus in milk from subclinical mastitic cattle and buffaloes and tank milk samples as identified by probe-based real-time polymerase chain reaction (PCR) and the genotypic assessment of macrolide and erythromycin resistance profiles, as well as to analyze the phylogenetic relatedness of our local isolates of S. aureus. Materials and Methods: In total, 285 milk samples were analyzed using the California mastitis test to detect SCM. Milk samples were cultured on different specific Staphylococcus media. The presence of S. aureus was confirmed by Gram staining, the catalase and coagulase tests, the detection of hemolytic activity, DNase agar testing, and biofilm activity in Congo red medium. The genotypic identification of S. aureus (nuc) was performed. The determinants of erythromycin (ermA, ermB, ermC, and ermT) and macrolide resistance (msrA) were screened in all isolates. DNA sequencing of our local isolates of S. aureus was used to analyze their phylogenetic relatedness. Moreover, histopathological examination of tissue specimens of mammary gland was performed. Results: The S. aureus positivity rates were 36.4%, 48.8%, and 63.6% in cattle, buffalo, and bulk tank milk, respectively. Probe-based real-time PCR molecularly confirmed all 62 S. aureus isolates. Thirty-one isolates were subjected to PCR to create profiles of their genotypic erythromycin resistance. ermA, ermB, ermC, and ermT were present in 5 (8%), 26 (41.9%), 18 (29%), and 15 (24.1%) S. aureus isolates, respectively. Moreover, msrA was found in three (4.8%) strains. Eight PCR products were produced using standard PCR for DNA sequencing. Multiple sequence alignment, phylogenetic tree construction, and analysis of nuc in S. aureus revealed a high degree of homology (100%) with S. aureus strains isolated from milk in cases of bovine mastitis in India and Kenya. Histological analysis of udder tissues revealed extensive aggregation of mononuclear inflammatory cells in the interstitial connective tissue, primarily lymphocytes, and macrophages. Conclusion: This study showed a high prevalence of erythromycin resistance in S. aureus isolates. This information is vital for controlling mastitis and the spread of resistance genes between bacterial strains and hosts. Moreover, the probe-based real-time PCR approach is helpful for the rapid screening of S. aureus isolates and the consequent efficient treatment and control of S. aureus mastitis.

19.
ACS Omega ; 8(29): 25903-25923, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521647

RESUMO

Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) that is used in the treatment of breast cancer, yet with the risk of developing uterine cancer. A perfect SERM would act as an estrogen activator on bones, the cardiovascular system, and the central nervous system while providing neutral or estrogen blocking effects on the breast and the uterus. Herein, we report on the design, synthesis, and evaluation of new rigid and flexible TAM analogues. Mainly, a chloro substituent is introduced at the para position of the TAM ring C blocking the CYP2D6 hydroxylation site. Most compounds showed estrogenic activity higher than TAM using the yeast estrogen screen assays, indicating the determinant role of the chloro substituent upon functional activity. Despite being estrogenic, compound 2B showed potent antiproliferative activity in the NCI 60 cell lines with mean GI50 = 3.67 µM, GI50 = 1.05 µM on MCF-7 cell lines, and GI50 = 1.30 µM on MDA-MB-231. The estrogenic activity of compound 2B was further confirmed by stimulating alkaline phosphatase in Ishikawa cells, and it showed no increase in relative uterine wet weight in ovariectomized rats. Compound 2F showed EC90 = 0.31 µg/mL and SI90 = 60 against Ebola virus; this is 200-fold more potent than the positive control favipiravir. This is the first time to report estrogenic triphenylethylenes as anti-EBOV agents. The anti-EBOV activity reported is a function of the substitution pattern of the scaffold rather than the functional activity. Moreover, compound 3D showed excellent PO pharmacokinetic properties in mice. In conclusion, for this class of TAM-like compounds, the blockage of the p-position of ring C is decisive for the functional activity; meanwhile, the triarylethylene substitution pattern is detrimental for the antiviral activity.

20.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450603

RESUMO

Patients with secondary adrenal insufficiency can present with impaired free water excretion and hyponatremia, which is due to the enhanced secretion of vasopressin (AVP) despite increased total body water. AVP is produced in magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVH) and supraoptic nucleus and in parvocellular corticotropin-releasing factor (CRF) neurons in the PVH. This study aimed to elucidate whether magnocellular AVP neurons or parvocellular CRF neurons coexpressing AVP are responsible for the pathogenesis of hyponatremia in secondary adrenal insufficiency. The number of CRF neurons expressing copeptin, an AVP gene product, was significantly higher in adrenalectomized AVP-floxed mice (AVPfl/fl) than in sham-operated controls. Adrenalectomized AVPfl/fl mice supplemented with aldosterone showed impaired water diuresis under ad libitum access to water or after acute water loading. They became hyponatremic after acute water loading, and it was revealed under such conditions that aquaporin-2 (AQP2) protein levels were increased in the kidney. Furthermore, translocation of AQP2 to the apical membrane was markedly enhanced in renal collecting duct epithelial cells. Remarkably, all these abnormalities observed in the mouse model for secondary adrenal insufficiency were ameliorated in CRF-AVP-/- mice that lacked AVP in CRF neurons. Our study demonstrates that CRF neurons in the PVH are responsible for the pathogenesis of impaired water excretion in secondary adrenal insufficiency.


Assuntos
Insuficiência Adrenal , Hiponatremia , Camundongos , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hiponatremia/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Vasopressinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Diurese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...