Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520777

RESUMO

BACKGROUND: Colorectal and gastric cancer are major causes of cancer-related deaths. In Korea, gastrointestinal (GI) endoscopic biopsy specimens account for a high percentage of histopathologic examinations. Lack of a sufficient pathologist workforce can cause an increase in human errors, threatening patient safety. Therefore, we developed a digital pathology total solution combining artificial intelligence (AI) classifier models and pathology laboratory information system for GI endoscopic biopsy specimens to establish a post-analytic daily fast quality control (QC) system, which was applied in clinical practice for a 3-month trial run by four pathologists. METHODS AND FINDINGS: Our whole slide image (WSI) classification framework comprised patch-generator, patch-level classifier, and WSI-level classifier. The classifiers were both based on DenseNet (Dense Convolutional Network). In laboratory tests, the WSI classifier achieved accuracy rates of 95.8% and 96.0% in classifying histopathological WSIs of colorectal and gastric endoscopic biopsy specimens, respectively, into three classes (Negative for dysplasia, Dysplasia, and Malignant). Classification by pathologic diagnosis and AI prediction were compared and daily reviews were conducted, focusing on discordant cases for early detection of potential human errors by the pathologists, allowing immediate correction, before the pathology report error is conveyed to the patients. During the 3-month AI-assisted daily QC trial run period, approximately 7-10 times the number of slides compared to that in the conventional monthly QC (33 months) were reviewed by pathologists; nearly 100% of GI endoscopy biopsy slides were double-checked by the AI models. Further, approximately 17-30 times the number of potential human errors were detected within an average of 1.2 days. CONCLUSIONS: The AI-assisted daily QC system that we developed and established demonstrated notable improvements in QC, in quantitative, qualitative, and time utility aspects. Ultimately, we developed an independent AI-assisted post-analytic daily fast QC system that was clinically applicable and influential, which could enhance patient safety.


Assuntos
Inteligência Artificial , Neoplasias Colorretais , Humanos , Biópsia , Endoscopia Gastrointestinal , Controle de Qualidade , Neoplasias Colorretais/diagnóstico
2.
Diagnostics (Basel) ; 12(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741303

RESUMO

CNN-based image processing has been actively applied to histopathological analysis to detect and classify cancerous tumors automatically. However, CNN-based classifiers generally predict a label with overconfidence, which becomes a serious problem in the medical domain. The objective of this study is to propose a new training method, called MixPatch, designed to improve a CNN-based classifier by specifically addressing the prediction uncertainty problem and examine its effectiveness in improving diagnosis performance in the context of histopathological image analysis. MixPatch generates and uses a new sub-training dataset, which consists of mixed-patches and their predefined ground-truth labels, for every single mini-batch. Mixed-patches are generated using a small size of clean patches confirmed by pathologists while their ground-truth labels are defined using a proportion-based soft labeling method. Our results obtained using a large histopathological image dataset shows that the proposed method performs better and alleviates overconfidence more effectively than any other method examined in the study. More specifically, our model showed 97.06% accuracy, an increase of 1.6% to 12.18%, while achieving 0.76% of expected calibration error, a decrease of 0.6% to 6.3%, over the other models. By specifically considering the mixed-region variation characteristics of histopathology images, MixPatch augments the extant mixed image methods for medical image analysis in which prediction uncertainty is a crucial issue. The proposed method provides a new way to systematically alleviate the overconfidence problem of CNN-based classifiers and improve their prediction accuracy, contributing toward more calibrated and reliable histopathology image analysis.

3.
Sci Rep ; 12(1): 1392, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082315

RESUMO

This paper proposes a deep learning-based patch label denoising method (LossDiff) for improving the classification of whole-slide images of cancer using a convolutional neural network (CNN). Automated whole-slide image classification is often challenging, requiring a large amount of labeled data. Pathologists annotate the region of interest by marking malignant areas, which pose a high risk of introducing patch-based label noise by involving benign regions that are typically small in size within the malignant annotations, resulting in low classification accuracy with many Type-II errors. To overcome this critical problem, this paper presents a simple yet effective method for noisy patch classification. The proposed method, validated using stomach cancer images, provides a significant improvement compared to other existing methods in patch-based cancer classification, with accuracies of 98.81%, 97.30% and 89.47% for binary, ternary, and quaternary classes, respectively. Moreover, we conduct several experiments at different noise levels using a publicly available dataset to further demonstrate the robustness of the proposed method. Given the high cost of producing explicit annotations for whole-slide images and the unavoidable error-prone nature of the human annotation of medical images, the proposed method has practical implications for whole-slide image annotation and automated cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...