Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
PLoS One ; 18(2): e0279669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800340

RESUMO

Discrimination of brain cancer versus non-cancer patients using serum-based attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy diagnostics was first developed by Hands et al with a reported sensitivity of 92.8% and specificity of 91.5%. Cameron et al. then went on to stratifying between specific brain tumour types: glioblastoma multiforme (GBM) vs. primary cerebral lymphoma with a sensitivity of 90.1% and specificity of 86.3%. Expanding on these studies, 30 GBM, 30 lymphoma and 30 non-cancer patients were selected to investigate the influence on test performance by focusing on specific molecular weight regions of the patient serum. Membrane filters with molecular weight cut offs of 100 kDa, 50 kDa, 30 kDa, 10 kDa and 3 kDa were purchased in order to remove the most abundant high molecular weight components. Three groups were classified using both partial least squares-discriminate analysis (PLS-DA) and random forest (RF) machine learning algorithms; GBM versus non-cancer, lymphoma versus non-cancer and GBM versus lymphoma. For all groups, once the serum was filtered the sensitivity, specificity and overall balanced accuracies decreased. This illustrates that the high molecular weight components are required for discrimination between cancer and non-cancer as well as between tumour types. From a clinical application point of view, this is preferable as less sample preparation is required.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Linfoma , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Neoplasias Encefálicas/diagnóstico , Linfoma/diagnóstico , Glioblastoma/diagnóstico , Análise dos Mínimos Quadrados
2.
Phys Rev Lett ; 129(6): 061104, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018635

RESUMO

We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q≥0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr^{-1}. This implies an upper limit on the merger rate of subsolar binaries in the range [220-24200] Gpc^{-3} yr^{-1}, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M_{⊙}

3.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804820

RESUMO

Pancreatic cancer claims over 460,000 victims per year. The carbohydrate antigen (CA) 19-9 test is the blood test used for pancreatic cancer's detection; however, its levels can be raised in symptomatic patients with other non-malignant diseases, or with other tumors in the surrounding area. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has demonstrated exceptional potential in cancer diagnostics, and its clinical implementation could represent a significant step towards early detection. This proof-of-concept study, investigating the use of ATR-FTIR spectroscopy on dried blood serum, focused on the discrimination of both cancer versus healthy control samples, and cancer versus symptomatic non-malignant control samples, as a novel liquid biopsy approach for pancreatic cancer diagnosis. Machine learning algorithms were applied, achieving results of up to 92% sensitivity and 88% specificity when discriminating between cancers (n = 100) and healthy controls (n = 100). An area under the curve (AUC) of 0.95 was obtained through receiver operating characteristic (ROC) analysis. Balanced sensitivity and specificity over 75%, with an AUC of 0.83, were achieved with cancers (n = 35) versus symptomatic controls (n = 35). Herein, we present these results as demonstration that our liquid biopsy approach could become a simple, minimally invasive, and reliable diagnostic test for pancreatic cancer detection.

4.
J Neurotrauma ; 39(11-12): 773-783, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35236121

RESUMO

Computed tomography (CT) brain imaging is routinely used to support clinical decision-making in patients with traumatic brain injury (TBI). Only 7% of scans, however, demonstrate evidence of TBI. The other 93% of scans contribute a significant cost to the healthcare system and a radiation risk to patients. There may be better strategies to identify which patients, particularly those with mild TBI, are at risk of deterioration and require hospital admission. We introduce a blood serum liquid biopsy that utilizes attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy with machine learning algorithms as a decision-making tool to identify which patients with mild TBI will most likely present with a positive CT scan. Serum samples were obtained from patients (n = 298) patients who had acquired a TBI and were enrolled in CENTER-TBI and from asymptomatic control patients (n = 87). Injury patients (all severities) were stratified against non-injury controls. The cohort with mild TBI was further examined by stratifying those who had at least one CT abnormality against those who had no CT abnormalities. The test performed exceptionally well in classifications of patients with mild injury versus non-injury controls (sensitivity = 96.4% and specificity = 98.0%) and also provided a sensitivity of 80.2% when stratifying mild patients with at least one CT abnormality against those without. The results provided illustrate the test ability to identify four of every five CT abnormalities and show great promise to be introduced as a triage tool for CT priority in patients with mild TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Hospitais , Humanos , Análise Espectral , Tomografia Computadorizada por Raios X , Triagem
5.
Chem Sci ; 12(28): 9770-9777, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349950

RESUMO

We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant.

6.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359751

RESUMO

BACKGROUND: To support the early detection and diagnosis of brain tumours we have developed a rapid, cost-effective and easy to use spectroscopic liquid biopsy based on the absorbance of infrared radiation. We have previously reported highly sensitive results of our approach which can discriminate patients with a recent brain tumour diagnosis and asymptomatic controls. Other liquid biopsy approaches (e.g., based on tumour genetic material) report a lower classification accuracy for early-stage tumours. In this manuscript we present an investigation into the link between brain tumour volume and liquid biopsy test performance. METHODS: In a cohort of 177 patients (90 patients with high-grade glioma (glioblastoma (GBM) or anaplastic astrocytoma), or low-grade glioma (astrocytoma, oligoastrocytoma and oligodendroglioma)) tumour volumes were calculated from magnetic resonance imaging (MRI) investigations and patients were split into two groups depending on MRI parameters (T1 with contrast enhancement or T2/FLAIR (fluid-attenuated inversion recovery)). Using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy coupled with supervised learning methods and machine learning algorithms, 90 tumour patients were stratified against 87 control patients who displayed no symptomatic indications of cancer, and were classified as either glioma or non-glioma. RESULTS: Sensitivities, specificities and balanced accuracies were all greater than 88%, the area under the curve (AUC) was 0.98, and cancer patients with tumour volumes as small as 0.2 cm3 were correctly identified. CONCLUSIONS: Our spectroscopic liquid biopsy approach can identify gliomas that are both small and low-grade showing great promise for deployment of this technique for early detection and diagnosis.

7.
Phys Rev Lett ; 126(24): 241102, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213926

RESUMO

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gµ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on Gµ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gµâ‰²4×10^{-15}. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models.

8.
Living Rev Relativ ; 23(1): 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015351

RESUMO

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems. The ability to localize the sources is given as a sky-area probability, luminosity distance, and comoving volume. The median sky localization area (90% credible region) is expected to be a few hundreds of square degrees for all types of binary systems during O3 with the Advanced LIGO and Virgo (HLV) network. The median sky localization area will improve to a few tens of square degrees during O4 with the Advanced LIGO, Virgo, and KAGRA (HLVK) network. During O3, the median localization volume (90% credible region) is expected to be on the order of 10 5 , 10 6 , 10 7 Mpc 3 for binary neutron star, neutron star-black hole, and binary black hole systems, respectively. The localization volume in O4 is expected to be about a factor two smaller than in O3. We predict a detection count of 1 - 1 + 12 ( 10 - 10 + 52 ) for binary neutron star mergers, of 0 - 0 + 19 ( 1 - 1 + 91 ) for neutron star-black hole mergers, and 17 - 11 + 22 ( 79 - 44 + 89 ) for binary black hole mergers in a one-calendar-year observing run of the HLV network during O3 (HLVK network during O4). We evaluate sensitivity and localization expectations for unmodeled signal searches, including the search for intermediate mass black hole binary mergers.

9.
Phys Rev Lett ; 125(10): 101102, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955328

RESUMO

On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

10.
Cancer Lett ; 477: 122-130, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112901

RESUMO

Fourier Transform Infrared Spectroscopy (FTIR) has been largely employed by scientific researchers to improve diagnosis and treatment of cancer, using various biofluids and tissues. The technology has proved to be easy to use, rapid and cost-effective for analysis on human blood serum to discriminate between cancer versus healthy control samples. The high sensitivity and specificity achievable during samples classification aided by machine learning algorithms, offers an opportunity to transform cancer referral pathways, as it has been demonstrated in a unique and recent prospective clinical validation study on brain tumours. We herein highlight the importance of early detection in cancer research using FTIR, discussing the technique, the suitability of serum for analysis and previous studies, with special focus on pre-clinical factors and clinical translation requirements and development.


Assuntos
Líquidos Corporais/química , Neoplasias/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Coleta de Amostras Sanguíneas , Neoplasias Encefálicas/diagnóstico , Ensaios Clínicos como Assunto , Humanos , Aprendizado de Máquina , Sensibilidade e Especificidade
11.
J Med Internet Res ; 22(1): e13252, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32012048

RESUMO

BACKGROUND: More than 18 million Americans are currently suffering from alcohol use disorder (AUD): a compulsive behavior of alcohol use as a result of a chronic, relapsing brain disease. With alcohol-related injuries being one of the leading causes of preventable deaths, there is a dire need to find ways to assist those suffering from alcohol dependence. There still exists a gap in knowledge as to the potential of telemedicine in improving health outcomes for those patients suffering from AUD. OBJECTIVE: The purpose of this systematic review was to evaluate the measures of effectiveness, efficiency, and quality that result from the utilization of telemedicine in the management of alcohol abuse, addiction, and rehabilitation. METHODS: This review was conducted utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The articles used in this analysis were gathered using keywords inclusive of both telemedicine and alcohol abuse, which were then searched in the Cumulative Index to Nursing and Allied Health Literature, Cochrane, and MEDLINE (PubMed) databases. A total of 22 articles were chosen for analysis. RESULTS: The results indicated that telemedicine reduced alcohol consumption. Other common outcomes included reduced depression (4/35, 11%), increased patient satisfaction (3/35, 9%), increase in accessibility (3/35, 9%), increased quality of life (2/35, 6%), and decreased cost (1/35, 3%). Interventions included mobile health (11/22, 50%), electronic health (6/22, 27%), telephone (3/33, 14%), and 2-way video (2/22, 9%). Studies were conducted in 3 regions: the United States (13/22, 59%), the European Union (8/22, 36%), and Australia (1/22, 5%). CONCLUSIONS: Telemedicine was found to be an effective tool in reducing alcohol consumption and increasing patients' accessibility to health care services or health providers. The group of articles for analysis suggested that telemedicine may be effective in reducing health care costs and improving the patient's quality of life. Although telemedicine shows promise as an effective way to manage alcohol-related disorders, it should be further investigated before implementation.


Assuntos
Alcoolismo/psicologia , Comportamento Aditivo/psicologia , Qualidade de Vida/psicologia , Reabilitação/psicologia , Telemedicina/métodos , Humanos
12.
Phys Rev Lett ; 123(16): 161102, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702344

RESUMO

We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M_{⊙}-1.0 M_{⊙}. We use the null result to constrain the binary merger rate of (0.2 M_{⊙}, 0.2 M_{⊙}) binaries to be less than 3.7×10^{5} Gpc^{-3} yr^{-1} and the binary merger rate of (1.0 M_{⊙}, 1.0 M_{⊙}) binaries to be less than 5.2×10^{3} Gpc^{-3} yr^{-1}. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M_{⊙} black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M_{⊙} black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.

13.
Phys Rev Lett ; 123(1): 011102, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386391

RESUMO

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.

14.
Chem Commun (Camb) ; 55(49): 7081-7084, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31149677

RESUMO

A new approach to examine electrochemiluminescence (ECL), in which the potentials at both the working and counter electrodes are measured and the emitted light is detected by a photomultiplier tube, camera and then a charge-coupled device (CCD) spectrometer, provides unequivocal evidence that the purported cathodic ECL of [Ru(bpy)3]2+ and tri-n-propylamine actually arises from anodic reactions at the counter electrode.

15.
Phys Rev Lett ; 122(6): 061104, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822067

RESUMO

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB_{!pg}^{pg}) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB_{!pg}^{pg}=0.03_{-0.58}^{+0.70} (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB_{!pg}^{pg} even when p-g effects are absent. We find that the p-g amplitude for 1.4 M_{⊙} neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest ≲10^{3} modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates ≲10^{51} erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

16.
Phys Rev Lett ; 121(23): 231103, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576173

RESUMO

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 M_{⊙}-1.0 M_{⊙} using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning (0.2 M_{⊙}, 0.2 M_{⊙}) ultracompact binaries to be less than 1.0×10^{6} Gpc^{-3} yr^{-1} and the coalescence rate of a similar distribution of (1.0 M_{⊙}, 1.0 M_{⊙}) ultracompact binaries to be less than 1.9×10^{4} Gpc^{-3} yr^{-1} (at 90% confidence). Neither black holes nor neutron stars are expected to form below ∼1 M_{⊙} through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early Universe and contribute to the dark matter density. The interpretation of our constraints in the primordial black hole dark matter paradigm is highly model dependent; however, under a particular primordial black hole binary formation scenario we constrain monochromatic primordial black hole populations of 0.2 M_{⊙} to be less than 33% of the total dark matter density and monochromatic populations of 1.0 M_{⊙} to be less than 5% of the dark matter density. The latter strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations.

17.
Phys Rev Lett ; 121(16): 161101, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30387654

RESUMO

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R_{1}=10.8_{-1.7}^{+2.0} km for the heavier star and R_{2}=10.7_{-1.5}^{+2.1} km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M_{⊙} as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R_{1}=11.9_{-1.4}^{+1.4} km and R_{2}=11.9_{-1.4}^{+1.4} km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5_{-1.7}^{+2.7}×10^{34} dyn cm^{-2} at the 90% level.

18.
Phys Rev Lett ; 120(20): 201102, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864331

RESUMO

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25 Hz.

19.
Living Rev Relativ ; 21(1): 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725242

RESUMO

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

20.
Phys Rev Lett ; 120(9): 091101, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547330

RESUMO

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...