Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172275, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583608

RESUMO

Growing concern over the presence of per- and polyfluoroalkyl substances (PFAS) in agricultural compartments (e.g., soil, water, plants, soil fauna) has led to an increased interest in scalable and economically feasible remediation technologies. Biochar is the product of pyrolyzing organic materials (crop waste, wood waste, manures, grasses) and has been used as a low-cost adsorbent to remove contaminants including PFAS. This review frames biochar as a strategy for mitigating the detrimental impacts of PFAS in agricultural systems and discusses the benefits of this strategy within the framework of the needs and challenges of contaminant remediation in agriculture. To gauge the optimal physicochemical characteristics of biochar in terms of PFAS adsorption, principal component analysis using >100 data points from the available literature was performed. The main biochar-based PFAS treatment strategies (water filtration, soil application, mixing with biosolids) were also reviewed to highlight the benefits and complications of each. Life cycle analyses on the use of biochar for contaminant removal were summarized, and data from selected studies were used to calculate (for the first time) the global warming potential and net energy demand of various agriculturally important biochar classes (crop wastes, wood wastes, manures) in relation to their PFAS adsorption performance. This review serves to identify key gaps in our knowledge of (i) PFAS adsorption by biochars in agricultural remediation applications and (ii) environmental costs/benefits of biochars in relation to their adsorptive properties toward PFAS. The concepts introduced in this review may assist in developing large-scale biochar-based PFAS remediation strategies to help protect the agricultural food production environment.


Assuntos
Agricultura , Carvão Vegetal , Recuperação e Remediação Ambiental , Carvão Vegetal/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Poluentes do Solo/química , Fluorocarbonos/química , Fluorocarbonos/análise , Adsorção
2.
Sci Total Environ ; 858(Pt 3): 159841, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397604

RESUMO

Under the ongoing climate change scenario, treated municipal wastewater (TMW) is a potential candidate for irrigated agriculture but may result in the exposure of agricultural environments to antibiotics. We studied the transfers of trimethoprim, sulfamethoxazole, and sulfapyridine in the TMW-soil-plant-earthworm continuum under greenhouse/laboratory conditions. Irrigation of potted spinach and radish with as-collected TMW resulted in no transfers of antibiotics into soil or plants owing to their low concentrations in the tertiary-treated TMW. However, TMW spiked with higher antibiotic concentrations led to transfers through this continuum. High initial inputs, slow soil degradation, and chemical speciation of the antibiotics, coupled with an extensive plant-root distribution, were important factors enhancing the plant uptake of antibiotics. In microcosm studies, transfers from vegetable materials into earthworms were low but showed potential for bioaccumulation. Such food chain transfers of antibiotics may be a driver for antibiotic resistance in agricultural systems, which is an area worthy of future study. These issues can perhaps be mitigated through high levels of TMW purification to effectively remove antibiotic compounds.


Assuntos
Oligoquetos , Animais , Solo , Águas Residuárias , Antibacterianos
3.
J Hazard Mater ; 396: 122762, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361626

RESUMO

Reducing the emissions of soil fumigants such as 1,3-dichloropropene (1,3-D) is essential to protecting air quality. Although biochar is useful in reducing such emissions, biochar-adsorbed fumigants may desorb and cause secondary air pollution. This study investigated the degradation of 1,3-D on iron (Fe)-impregnated biochar (FBC) amended with urea-hydrogen peroxide (UHP). The results indicated the degradation rate of trans-1,3-D on FBC-UHP was 54-fold higher than that on pristine biochar (PBC). Electron paramagnetic resonance (EPR) combined with other characterization methods revealed that the presence of semiquinone-type radicals in FBC effectively accelerated the Fe(III)/Fe(II) cycleto maintain enough Fe(IIII) for UHP activation and ·OH generation. ·OH, rather than ·O2-, was the dominant active oxidant. Soil column tests showed that application of FBC to the soil surface reduced cumulative 1,3-D emissions from 34.80 % (bare soil) to 0.81%. After the column experiment, the mixing of the FBC with UHP resulted in the residual cis-isomers decreasing from 32.5% to 10.5%. Greenhouse bioassays showed that mixing post-1,3-D degradation FBC-UHP with soil significantly promoted lettuce growth relative to PBC. The findings of this study provide a new approach for biochar application, especially for the emission reduction of hazardous volatile organic compounds from soil.


Assuntos
Compostos Alílicos , Hidrocarbonetos Clorados , Peróxido de Carbamida , Carvão Vegetal , Compostos Férricos , Hidrocarbonetos Clorados/análise , Peróxido de Hidrogênio , Solo
4.
Sci Total Environ ; 687: 392-400, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212146

RESUMO

Observations of fumigant and pesticide emissions are needed for multiple public health and environmental protection mandates. The aerodynamic gradient method (ADM) is commonly used to measure fumigant and pesticide emissions. However, the ADM may over estimate emissions compared to other micrometeorological and modeling approaches, which would increase uncertainty over the true flux estimate. Different studies with ADM have also used multiple differing transport functions that relate concentration gradients to emissions. Therefore, we tested different and more recent transport functions to try to correct the anticipated observed higher values with ADM using observations from two sites in California, USA. We evaluated different transport functions against eddy covariance observations and found that using the functions developed by Högström (1996) corrected the ADM values to be in line with other observational methods. For the Fresno experiment, cumulative emission masses from the ADM- Högström functions were within 7% of other approaches while the Pruitt function was >15% higher. Applying the Högström functions to a series of previous fumigation experiments in California saw reductions in the ADM observations of >25% for cumulative mass emissions. The results indicate that the Högström functions should be used for future ADM experiments in the absence of more robust transport factors for local meteorological conditions. The results also illustrate how previous ADM observations could be corrected to reduce uncertainty in flux emissions estimates.

5.
Sci Total Environ ; 682: 457-463, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128365

RESUMO

The volatile release of agricultural fumigants from soil to air is a critical concern in terms of human and environmental health. A major control on the release of fumigants from soil to air is their degradation rate within the soil; however, this is a function of human/soil/environmental conditions and their inter-relationships. For the common fumigant chloropicrin (CP), it is known that application rate has a marked effect on degradation rate, with a potential further influence on CP emissions. We conducted batch degradation studies to better understand how CP degradation rate changes in response to application rate (56, 224, 392kgha-1) under gradients of soil temperature (10, 25, and 40°C), soil moisture content (1, 8, and 15%), and organic matter content (1, 2, and 3%). A general trend of degradation rate decreasing with increasing application rate was observed across almost all such gradients, which is likely attributable to decreased microbial numbers and activity (i.e., degradation) at high (toxic) application rates. The effects of these ranges in degradation rate on emissions from soil to air were predicted using an analytical solution model, indicating that between the low and high application rates, total emissions percentage increased markedly (increases ranging from 69 to 99.8 percentage points, depending on prevalent conditions). The work will be useful to state and federal regulators in assessing the likely impact of CP use on air quality and human health.


Assuntos
Fumigação/métodos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Poluentes do Solo/análise , Agricultura , Meia-Vida , Solo/química
6.
Sci Total Environ ; 622-623: 764-769, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223903

RESUMO

Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil across a wide range of CP applications (equivalent to 56-392kgha-1). In contrast to the known behavior of other fumigants, total emission percentages were strongly and positively related to application rate (i.e., initial mass), ranging from 4 to 34% across the application rate range. When combined, data from a previous study and the present study showed good overall comparability in terms of CP application rate vs. emission percentage, yielding a second-order polynomial relationship with an R2 value of 0.93 (n=12). The study revealed that mass losses of CP were strongly disproportional to application rate, also showing a polynomial relationship. Based on degradation studies, we consider that a shorter half-life (faster degradation) at lower application rates limited the amount of CP available for emission. The non-linear relationship between CP application rate and CP emissions (both as % of that applied and as total mass) suggests that low application rates likely lead to disproportionally low emission losses compared with higher application rates; such a relationship could be taken into account when assessing/mitigating risk, e.g., in the setting of buffer zone distances.

7.
J Environ Sci Health B ; 52(2): 99-106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28099087

RESUMO

Emissions of volatile soil fumigant 1,3-dichloropropene (1,3-D) from soil to air are a significant concern in relation to air quality, and cost-effective strategies to reduce such emissions are urgently required by growers to help them comply with increasingly stringent regulations. In this work, application of a rice husk-derived biochar to the surface of a sandy loam soil chamber reduced soil-air emissions of 1,3-D from 42% in a control (no biochar) to 8% due to adsorption onto the biochar. This adsorbed 1,3-D showed a potential for re-volatilization into air and solubilization into the soil-liquid phase. Biochar at the soil surface also reduced soil-gas concentrations in the upper soil; based on the determination of concentration-time values, this may limit 1,3-D-induced nematode control in the upper soil. In batch studies, the mixing of biochar into the soil severely limited nematode control; 1,3-D application rates around four times greater than the maximum permissible limit would be required to give nematode control under such conditions. Therefore, the use of biochar as a surface amendment, while showing an emission reduction benefit, may limit pest control during subsequent fumigations if, as seems probable, it is plowed into the soil.


Assuntos
Poluição do Ar/prevenção & controle , Compostos Alílicos/química , Carvão Vegetal , Hidrocarbonetos Clorados/química , Solo/parasitologia , Adsorção , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Compostos Alílicos/análise , Animais , Fumigação/métodos , Hidrocarbonetos Clorados/análise , Nematoides , Oryza/química , Controle de Pragas/métodos , Solo/química , Volatilização
8.
Environ Sci Technol ; 50(3): 1182-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26726779

RESUMO

During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication.


Assuntos
Compostos Alílicos/análise , Carvão Vegetal , Fumigação/métodos , Poluentes do Solo/análise , Solo , Compostos Alílicos/química , Meio Ambiente , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/química , Oryza , Praguicidas/análise , Polietileno/química , Microbiologia do Solo , Poluentes do Solo/química , Tiossulfatos/química , Resíduos
9.
J Agric Food Chem ; 63(22): 5354-63, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26001417

RESUMO

Soil fumigation is an important agronomic practice in the production of many high-value vegetable and fruit crops, but the use of chemical fumigants can lead to excessive atmospheric emissions. A large-scale (2.9 ha) field experiment was conducted to obtain volatilization and cumulative emission rates for two commonly used soil fumigants under typical agronomic practices: 1,3-dichloropropene (1,3-D) and chloropicrin. The aerodynamic method and the indirect back-calculation method using ISCST3 and CALPUFF dispersion models were used to estimate flux loss from the treated field. Over the course of the experiment, the daily peak volatilization rates ranged from 12 to 30 µg m(-2) s(-1) for 1,3-D and from 0.7 to 2.6 µg m(-2) s(-1) for chloropicrin. Depending on the method used for quantification, total emissions of 1,3-D and chloropicrin, respectively, ranged from 16 to 35% and from 0.3 to 1.3% of the applied fumigant. A soil incubation study showed that the low volatilization rates measured for chloropicrin were due to particularly high soil degradation rates observed at this field site. Understanding and quantifying fumigant emissions from agricultural soil will help in developing best management practices to reduce emission losses, reducing adverse impacts to human and ecosystem health, and providing inputs for conducting risk assessments.


Assuntos
Compostos Alílicos/química , Hidrocarbonetos Clorados/química , Praguicidas/química , Solo/química , Fumigação , Cinética , Poluentes do Solo/química
10.
J Agric Food Chem ; 63(2): 415-21, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25531174

RESUMO

Co-formulations of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) are commonly used for preplant fumigation in the production of high-value crops. Various ratios of 1,3-D to CP are available in these co-formulations. Collation of previous field data suggested that when the two fumigants were co-applied, the emissions of CP were significantly lower than when CP was applied singly. However, none of these previous studies had a control treatment with CP applied alone, alongside a treatment where CP was co-applied with 1,3-D under the same climatic and edaphic conditions. This work aimed to address this issue by measuring emission fluxes from soil columns maintained under controlled conditions in which 1,3-D and CP were applied alone and as four commercial co-formulations with various 1,3-D:CP ratios. A strong positive relationship between CP emissions and CP percentage in the formulation was observed. Furthermore, strong positive relationships between CP degradation half-life and CP percentage in the formulation and between CP degradation half-life and total column emissions suggested that the lower emissions were due to faster CP degradation when the CP percentage (and hence initial application mass) in the formulation was low. The presence of 1,3-D did not significantly affect the degradation rate of CP, and, therefore, it is hypothesized that co-application was, in itself, not a significant factor in emission losses from the columns. The findings have implications for the accurate modeling of CP because the effect of initial mass applied on CP degradation rate is not usually considered.


Assuntos
Compostos Alílicos/química , Hidrocarbonetos Clorados/química , Praguicidas/química , Poluentes do Solo/química , Química Farmacêutica , Fumigação , Cinética
11.
J Agric Food Chem ; 61(51): 12510-5, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24308342

RESUMO

Using field plots, we studied the effect on methyl iodide (MeI) emissions of coupling soil solarization (passive and active) and reduced rate fumigation (70% of a standard fumigation) in raised beds under virtually impermeable film (VIF). The results showed that for the standard fumigation and the passive solarization + fumigation treatments, emissions from the nontarped furrow were very high (∼50%). Emissions from the bed top and sidewall of these treatments were relatively low but were increased in the latter due to the longer environmental exposure of the VIF covering with the coupled approach (increased tarp permeability). Overall, this approach offered no advantage over fumigation-only in terms of emission reduction. With active solarization + fumigation, the large application of hot water during solarization apparently led to severely limited diffusion causing very low total emissions (<1%). Although this suggests a benefit in terms of air quality, a lack of diffusion could limit the pesticidal efficacy of the treatment.


Assuntos
Hidrocarbonetos Iodados/química , Praguicidas/química , Poluentes do Solo/química , Solo/química , Agricultura , Fumigação , Cinética , Volatilização
12.
Environ Sci Technol ; 47(22): 13047-52, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24151978

RESUMO

Although long-regarded as an excellent soil fumigant for killing plant pests, methyl bromide (MeBr) was phased out in 2005 in the USA, because it can deplete the stratospheric ozone layer. Iodomethane (MeI) has been identified as an effective alternative to MeBr and is used in a number of countries for preplant pest control. However, MeI is highly volatile and potentially carcinogenic to humans if inhaled. In addition, iodide anions, a breakdown product of MeI, can build up in fumigated soils and potentially cause plant toxicity and contaminate groundwater via leaching. In order to overcome the above two obstacles in MeI application, a method is proposed to place reactive bags containing ammonium hydroxide solution (NH4OH) on the soil surface underneath an impermeable plastic film covering the fumigated area. Our research showed that using this approach, over 99% of the applied MeI was quantitatively transferred to iodide. Of all the resulting iodide, only 2.7% remained in the fumigated soil, and 97.3% was contained in the reactive bag that can be easily removed after fumigation.


Assuntos
Poluição Ambiental/prevenção & controle , Fumigação , Hidrocarbonetos Iodados/análise , Iodetos/análise , Poluentes do Solo/análise , Solo/química , Hidróxido de Amônia/química , Meia-Vida , Cinética , Modelos Teóricos , Permeabilidade , Polietileno/química , Temperatura
13.
J Agric Food Chem ; 61(10): 2400-6, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23343207

RESUMO

Soil fumigation is an important component of U.S. agriculture, but excessive emissions can be problematic. The objective of this study was to determine the effects of agricultural films (e.g., tarps) on soil fumigant atmospheric emissions and spatiotemporal distributions in soil, soil temperature, and plant pathogen control in the field using plastic films with various permeabilities and thermal properties. A reduced rate of 70% InLine (60.8% 1,3-dichloropropene (1,3-D) and 33.3% chloropicrin (CP)) was applied via drip line to raised soil beds covered with standard high-density polyethylene film (HDPE), thermic film (Thermic), or virtually impermeable film (VIF). 1,3-D and CP emission rates were determined using dynamic flux chambers, and the concentrations in soil were measured using a gas sampler. The pest control efficacy for the three treatments was determined using bioassay muslin bags containing soil infested with citrus nematodes (Tylenchulus semipenetrans). The results show that the Thermic treatment had the highest emission rates, followed by the HDPE and VIF treatments, and the soil concentrations followed the reverse order. In terms of pest control, covering the beds with thermic film led to sufficient and improved efficacy against citrus nematodes compared to standard HDPE film. Under HDPE, >20% of nematodes survived in the soil at 30 cm depth at day 12. The VIF treatment substantially reduced the emission loss from the bed (2% of the Thermic and 6% of the HDPE treatments) and eliminated plant parasitic nematodes because of its superior ability to entrap fumigant and heat within soils. The findings imply that not only the film permeability but also the synergistic ability to entrap heat should be considered in the development of new improved films for fumigation.


Assuntos
Compostos Alílicos/química , Hidrocarbonetos Clorados/química , Controle de Pragas/métodos , Praguicidas/química , Solo/química , Tylenchida/efeitos dos fármacos , Compostos Alílicos/farmacologia , Animais , Hidrocarbonetos Clorados/farmacologia , Controle de Pragas/instrumentação , Praguicidas/farmacologia , Tylenchida/fisiologia
14.
Sci Total Environ ; 432: 122-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22728299

RESUMO

Although it is not currently being sold in the USA, the recent US registration of the fumigant methyl iodide has led to an increased interest in its environmental fate and transport. Although some work has now considered its volatile emissions from soil, there remains a lack of experimental data regarding its ability to be retained in soil and ultimately become transported with irrigation/rain waters. Using laboratory batch and soil column experiments, we aimed to better understand the phase partitioning of MeI, the ability of soils to retain MeI on the solid phase, and the potential for leaching of MeI and its primary degradation product, iodide, down a soil profile. Results indicated that MeI was retained by the solid phase of soil, being protected from volatilization and degradation, particularly in the presence of elevated organic matter. Retention was greater at lower moisture content, and maximum retention occurred after 56 days of incubation. At higher moisture content, the liquid phase also became important in retaining MeI within soil. Together with low observed K(D) values (0.10 to 0.57 mL g(-1)), these data suggest that MeI may be prone to leaching. Indeed, in a steady-state soil column study, initially retained MeI was transported with interstitial water. The MeI degradation product, iodide, was also readily transported in this manner. The data highlight a potentially significant process by which MeI fate and transport within the environment may be impacted.

15.
Environ Sci Technol ; 46(11): 6143-9, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22534067

RESUMO

Implicated as a stratospheric ozone-depleting compound, methyl bromide (MeBr) is being phased out despite being considered to be the most effective soil fumigant. Its alternatives, i.e., 1,3-dichloropropene (1,3-D, which includes cis and trans isomers), chloropicrin (CP), and methyl iodide (MeI), have been widely used. High emissions of MeI from fumigated soil likely put farm workers and other bystanders at risk of adverse health effects. In this study, two types of constructed reactive film were tested for their ability to mitigate emissions of 1,3-D, CP, and MeI using laboratory permeability cells. Before activation, these films act as a physical barrier to trap fumigants leaving soil. After activation of the reactive layer containing ammonium thiosulfate solution, the films also act as a sink for the fumigants. Over 97% of trans-1,3-D and 99% of the cis-1,3-D, CP and MeI were depleted when they passed into the reactive film. Half-lives (t(1/2)) of cis-, trans-1,3-D, CP and MeI under activated reactive film were 1.2, 1.4, 1.6, and 2.0 h respectively at 40 °C.


Assuntos
Compostos Alílicos/análise , Recuperação e Remediação Ambiental/métodos , Fumigação/métodos , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Iodados/análise , Poluentes do Solo/análise , Solo/química , Difusão , Cinética , Permeabilidade , Polietileno/química , Temperatura , Tiossulfatos/química
16.
J Environ Qual ; 40(1): 109-17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21488499

RESUMO

Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various environmental conditions and application methods.


Assuntos
Poluentes Atmosféricos/química , Hidrocarbonetos Iodados/química , Praguicidas/química , Poluentes do Solo/química , Solo/química , Poluentes Atmosféricos/farmacologia , Animais , Simulação por Computador , Relação Dose-Resposta a Droga , Echinochloa/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Hidrocarbonetos Iodados/farmacologia , Modelos Biológicos , Praguicidas/farmacologia , Tylenchoidea/efeitos dos fármacos
17.
Environ Sci Technol ; 45(6): 2317-22, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21341689

RESUMO

Emissions of methyl bromide (MeBr) from agricultural fumigation can lead to depletion of the stratospheric ozone layer, and so its use is being phased out. However, as MeBr is still widely used under Critical Use Exemptions, strategies are still required to control such emissions. In this work, novel reactive films (RFs) were designed and their efficacy in limiting loss of MeBr from soil was tested. A reactive layer, containing dry ammonium thiosulfate (ATS), was sandwiched between two layers of plastic film, the lower layer being HDPE (high-density polyethylene film, which is permeable to MeBr) and the upper layer HDPE or VIF (virtually impermeable film). MeBr diffusion through, and transformation by, the RFs were tested in a stainless-steel permeability cell. Although ineffective when dry, the RFs substantially depleted MeBr when activated with water to produce ATS solution. MeBr half-life (t(1/2)) was around 9.0 h at 20 °C in the presence of activated RF, and was sensitive to temperature (t(1/2) 15.7 and 2.9 h at 10 and 40 °C, respectively). When the upper film layer was VIF, less than 0.15% of the added MeBr diffused through the film, with the remainder being transformed within the reactive layer. These findings indicate that such films have good potential to reduce MeBr loss from fumigated soils to the atmosphere.


Assuntos
Poluentes Atmosféricos/química , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Bromados/química , Praguicidas/química , Plásticos/química , Tiossulfatos/química , Poluição do Ar/prevenção & controle , Fumigação
18.
Environ Sci Technol ; 44(23): 9080-5, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21058742

RESUMO

Despite generally being considered the most effective soil fumigant, methyl bromide (MeBr) use is being phased out because its emissions from soil can lead to stratospheric ozone depletion. However, a large amount is still currently used due to Critical Use Exemptions. As strategies for reducing the postfumigation emissions of MeBr from soil, Ca(OH)(2), K(2)CO(3), and NH(3) were assessed as means of promoting MeBr degradation. Ammonia aqueous solution (NH(4)OH) was the most effective, because MeBr can be degraded by both hydrolysis and ammonolysis. At 20 °C, the half-lives (t(1/2)) of MeBr were 18.0, 2.5, and 1.3 h in 0.1, 1.0, and 2.0 M NH(4)OH, respectively. In 1.0 M NH(4)OH, increasing the solution temperature to 40 °C reduced the half-life of MeBr to 0.23 h. Ammonia amendment to moist soil also promoted MeBr transformation, and the MeBr degradation rate increased with increasing soil temperature. NH(4)OH (30%, 16 M) very effectively reacted with MeBr that was contained under plastic film. Under Hytibar (a virtually impermeable film, VIF), over 99.5% of the MeBr could be destroyed by 30% NH(4)OH in 8 h at 20 °C. On the basis of these results, good management practices (i.e., VIF plus NH(4)OH) could be developed for continued use of MeBr as a soil fumigant under Critical Use Exemptions, without significant emissions.


Assuntos
Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos Bromados/química , Resíduos de Praguicidas/química , Poluentes do Solo/química , Hidróxido de Amônia , Hidróxido de Cálcio/química , Carbonatos/química , Desinfetantes/química , Fumigação , Meia-Vida , Concentração de Íons de Hidrogênio , Hidróxidos/química , Cinética , Potássio/química
19.
Environ Sci Technol ; 42(12): 4434-9, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605567

RESUMO

To overcome the environmental impacts of soil fumigant use, emission reduction strategies such as tarping can be adopted. There is a need to experimentally quantify the effectiveness of such strategies, preferably in a low-cost manner. We report the design and initial testing of a laboratory soil chamber approach for quantifying the soil distribution and emissions of fumigants from bed-furrow agricultural systems. As far as possible, field conditions (e.g., soil type, bulk density, moisture content temperature) were maintained in the experiments. In studying the drip application of chloropicrin using this system, very good data reproducibility was observed between replicates, allowing confidence in the experimental design. For control chambers, high emissions, around 60% (of the total added), were observed due to the near-surface (5 cm depth) application. When the soil beds were tarped using high-density polyethylene (HDPE) or semi-impermeable film (SIF), emissions were reduced to around 40% due to an accumulation of chloropicrin below the tarp. The approach offers an inexpensive potential alternative to studying fumigant emissions from bed-furrow systems in the field and suggests that less permeable tarps would be required to drastically reduce chloropicrin emissions.


Assuntos
Agricultura , Hidrocarbonetos Clorados/análise
20.
Chemosphere ; 68(3): 489-94, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17276490

RESUMO

Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and competitive systems. In the monometal system, the order of decreasing sorption was Zn>Cd>Ni. Competition significantly reduced metal K(d), especially that of Cd which decreased by nearly 50%. Over the course of the incubation there was a 31% reduction of soil organic matter content. At the same time, in competitive systems Cd K(d) significantly decreased, while Zn K(d) significantly increased, and Ni K(d) remained unaffected. This study shows that sewage sludge-amended soils may change in their ability to sorb heavy metals over time at high metal concentrations. The data suggest that Cd is likely to be of most environmental significance in such soils, since it exhibited decreased sorption under competitive conditions and as the organic matter content of the soil was reduced. The potential for long-term release of metals should be considered in the risk assessment associated with sewage sludge addition to soils, particularly in climates where degradation of organic matter is likely to be enhanced.


Assuntos
Metais Pesados/química , Esgotos/química , Solo/análise , Adsorção , Agricultura/métodos , Cádmio/química , Níquel/química , Poluentes do Solo/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA