Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735495

RESUMO

The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO4•-, and O2• - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH+ that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.


Assuntos
Hidróxidos , Membranas Artificiais , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Poluentes Químicos da Água/química , Hidróxidos/química , Fenóis/química , Peróxidos/química , Compostos Benzidrílicos/química , Carbamazepina/química , Ranitidina/química , Acetaminofen/química , Sulfametoxazol/química , Ciprofloxacina/química , Catálise , Cobalto/química , Oxirredução
2.
Water Sci Technol ; 89(5): 1325-1339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483501

RESUMO

Fouling behaviour in membrane distillation (MD) processes plays a crucial role in determining their widespread acceptability. Most studies have primarily focused on model organic foulants, such as humic acid (HA) and sodium alginate (SA). This study investigates the fouling of a polytetrafluoroethylene membrane in a direct contact MD (DCMD) using model organics (i.e., HA and SA) and real wastewater. The results indicated that the flux decline (5-60%) was only observed during the initial phase of the operation with model organic foulants. In contrast, real wastewater caused a gradual decline in flux throughout the experiment in both the concentrate (40%) and continuous (90%) modes. The study also found significant differences in the fouling layer morphology, composition, and hydrophobicity between the model organic foulants and real wastewater. Fourier transform infrared spectroscopy findings demonstrated that the fouling layer formed by real wastewater varied significantly from model organics, which primarily comprised of protein-like and polysaccharide-like functional groups. Finally, liquid chromatography-organic carbon detection revealed that the fouling layer of the MD membrane with real wastewater was composed of 40.7% hydrophobic and 59.3% hydrophilic organics. This study suggests that model organics may not accurately reflect real wastewater fouling.


Assuntos
Alginatos , Águas Residuárias , Carbono , Cromatografia Líquida , Destilação
3.
J Am Chem Soc ; 146(6): 3567-3584, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300989

RESUMO

Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.

4.
Sci Total Environ ; 912: 169160, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086474

RESUMO

Layered double hydroxides (LDHs), also known as anionic clays, have attracted significant attention in energy and environmental applications due to their exceptional physicochemical properties. These materials possess a unique structure with surface hydroxyl groups, tunable properties, and high stability, making them highly desirable. In this review, the synthesis and functionalization of LDHs have been explored including co-precipitation and hydrothermal methods. Furthermore, extensive research on LDH application in toxic pollutant removal has shown that modifying or functionalizing LDHs using materials such as activated carbon, polymers, and inorganics is crucial for achieving efficient pollutant adsorption, improved cyclic performance, as well as effective catalytic oxidation of organics and photoreduction. This study offers a comprehensive overview of the progress made in the field of LDHs and LDH-based composites for water and wastewater treatment. It critically discusses and explains both direct and indirect synthesis and modification techniques, highlighting their advantages and disadvantages. Additionally, this review critically discusses and explains the potential of LDH-based composites as absorbents. Importantly, it focuses on the capability of LDH and LDH-based composites in heterogeneous catalysis, including the Fenton reaction, Fenton-like reactions, photocatalysis, and photoreduction, for the removal of organic dyes, organic micropollutants, and heavy metals. The mechanisms involved in pollutant removal, such as adsorption, electrostatic interaction, complexation, and degradation, are thoroughly explained. Finally, this study outlines future research directions in the field.

5.
Environ Sci Technol ; 57(47): 18668-18679, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36730709

RESUMO

Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Radical Hidroxila/química , Cloretos , Peróxido de Hidrogênio/química , Oxirredução , Antibacterianos , Poluentes Químicos da Água/análise , Eletrodos
6.
Water Res ; 230: 119577, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638735

RESUMO

Progress in heterogeneous advanced oxidation processes (AOPs) is hampered by several issues including mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), aggregation of nanocatalysts, and loss of nanocatalysts to treated water. These issues have been addressed in recent studies by executing the heterogeneous AOPs in confinement, especially in the nanopores of catalytic membranes. Under nanoconfinement (preferably at the length of less than 25 nm), the oxidant-nanocatalyst interaction, ROS-micropollutant interaction and diffusion of ROS have been observed to significantly improve, which results in enhanced ROS yield and mass transfer, improved reaction kinetics and reduced matrix effect as compared to conventional heterogenous AOP configuration. Given the significance of nanoconfinement effect, this study presents a critical review of the current status of membrane-based nanoconfined heterogeneous catalysis system for the first time. A succinct overview of the nanoconfinement concept in the context of membrane-based nanofluidic platforms is provided to elucidate the theoretical and experimental findings related to reaction kinetics, reaction mechanisms and molecule transport in membrane-based nanoconfined AOPs vs. conventional AOPs. In addition, strategies to construct membrane-based nanoconfined catalytic systems are explained along with conflicting arguments/opinions, which provides critical information on the viability of these strategies and future research directions. To show the desirability and applicability of membrane-based nanoconfined catalysis systems, performance governing factors including operating conditions and water matrix effect are particularly focused. Finally, this review presents a systematic account of the opportunities and technological constraints in the development of membrane-based nanoconfined catalytic platform to realize effective micropollutant elimination in water treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Espécies Reativas de Oxigênio , Purificação da Água/métodos , Oxirredução , Catálise
7.
J Hazard Mater ; 441: 129951, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36115094

RESUMO

Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.


Assuntos
Poluentes Ambientais , Grafite , Catálise , Elétrons , Ferro/química , Óxidos de Nitrogênio/química , Oxirredução , Óxidos/química , Oxigênio
8.
Chemosphere ; 303(Pt 2): 135103, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35623439

RESUMO

The nitrogen and sulphur oxide (NOx and SO2) emissions are causing a serious threat to the existence of life on earth, requiring their effective removal for a sustainable future. Among various approaches, catalytic or electrochemical reduction of air pollutants (NOx) has gained much attention due to its high efficiency and the possibility of converting these gases into valuable products. However, the required catalysts are generally synthesized from lab-grade chemicals, which may not be a sustainable approach. Herein, a sustainable approach is presented to synthesize an efficient iron-based catalyst directly from industrial/lake wastewater (WW) for NOx-reduction. According to the theoretical calculations and experimental results, Fe-ions could be readily recovered from wastewater because it has the best adsorption efficiency among all other co-existing metals (Ni2+, Cd2+, Co2+, Cu2+, and Cr6+). The subsequent experimental investigations confirmed the preferential Fe adsorption from different WW streams to develop Fe3O4@EDTA-Fe composite, whereby Fe3O4 could be used due to its high recycling ability, and ethylenediaminetetraacetic acid (EDTA) acted as a chelating agent to adsorb Fe-metal from effluents. The Fe3O4@EDTA-Fe exhibited high efficiency (≥87%) for NOx reduction even in the presence of high-degree oxygen contents (10-12%). Moreover, Fe3O4-EDTA-Fe showed excellent long-term stability for 24 h and maintained more than 80% NOx reduction. The fabricated catalyst has a great potential for executing a dual role simultaneously for Fe-recovery and NOx removal, promoting the circular economy concept and providing a potentially sustainable remediation approach for large-scale applications.


Assuntos
Recuperação e Remediação Ambiental , Águas Residuárias , Catálise , Ácido Edético/química , Ferro/química , Oxirredução
9.
J Hazard Mater ; 425: 127988, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34891018

RESUMO

For the first time in this study, CoAl-layered double hydroxide nanosheet membrane (LDHm) with abundant active sites was fabricated for peroxymonosulfate (PMS) activation with the mindset to catalytically degrade micropollutants. Depending on the catalyst loading, the developed LDHm can be driven under gravity at a permeate flux of approximately 80 L/m2 h and 210 L/m2 h at LDH loading of 0.80 mg/cm2 and 0.08 mg/cm2, respectively. Notably, the LDHm (0.63 mg) exhibited excellent PMS activation efficiency as indicated by 87.8% removal of the probe chemical (ranitidine) at 0.2 mM PMS, which was higher than that (37-44%) achieved by conventional LDH (5-20 mg)/PMS (0.2 mM) system. In addition to efficient degradation of several micropollutants, LDHm/PMS performance was not inhibited by variation in solution pH (4-8) as well as during long-term (29 h) continuous-flow operation. SO4•- and 1O2 were identified as the primary reactive species in the LDHm/PMS system, while both Co and Al participated in PMS activation. This study offers a simple strategy for efficient removal of several micropollutants with significantly reduced catalyst leaching, which could be applied sustainably in water treatment.

10.
J Environ Manage ; 291: 112708, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971511

RESUMO

Groundwater is the dominant source of freshwater in many countries around the globe, and the deterioration in its quality by contaminants originating from anthropogenic sources raises serious concern. In this study, a scenario where groundwater is contaminated by acid mine drainage (AMD) from mining activities and/or sewage was envisaged, and the performance of a direct contact membrane distillation (DCMD) system was investigated comprehensively for different compositions of the AMD- and sewage-impacted groundwater. Regardless of the composition, MD membrane achieved 98-100% removal of metals and bulk organics, while the removal of the selected micropollutants ranged between 80 and 100%. Effective retention of contaminants by the MD led to their accumulation over time, which affected the hydraulic performance of the MD membrane by reducing the permeate flux by 29-76%. When persulfate (PS)-mediated oxidation process was integrated with the DCMD, degradation of bulk organics (50-71%) and micropollutants (50-100%) by PS reduced their accumulation. Characterisation of the fouling layer revealed the occurrence of membrane scaling that was mainly due to the deposition of iron oxide or oxyhydroxide precipitates. For an identical composition of the AMD- and sewage-impacted groundwater, flux decline was 10% less in PS-assisted DCMD as compared to that in the standalone DCMD. However, this did not prevent the formation of iron oxide scales on MD membrane during the operation of PS-assisted DCMD. This study demonstrates the long-term performance of a standalone and PS-assisted DCMD operated in continuous-flow mode to treat AMD- and sewage-impacted groundwater for the first time.


Assuntos
Destilação , Água Subterrânea , Membranas Artificiais , Mineração , Esgotos
11.
J Environ Sci (China) ; 102: 301-315, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637256

RESUMO

A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F-) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F-, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F- ions concentration in synthetic solution to lower than 6 µg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Antimônio , Celulose , Fluoretos , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Sci Total Environ ; 771: 144850, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548702

RESUMO

Delivering drinking water with stable quality in metropolitan cities is a big challenge. This study investigated the year-long dynamics of dissolved organic matter (DOM) in the tap water and source water of a metropolitan city in southern China using fluorescence spectroscopy. The DOM detected in the tap water, and source water of Shenzhen city was season and location-dependent. A year-long cyclic trend of DOM was found with predominate protein-like fluorescence in the dry season compared to the humic-like enriched DOM in the wet season. A general DOM pattern was estimated by measuring the shift in dominant fluorescence regions on the excitation-emission matrix (EEM). The difference in fluorescent DOM (FDOM) composition (in terms of the ratio of protein-like to humic-like fluorescence) was above 200% between wet and dry seasons. The taps associated with reservoirs receiving water from the eastern tributary of Dongjiang River showed significant changes in protein-like contents than the taps with source water originating from the western part of the river. This study highlights the importance of optimizing drinking water treatment plants' operational conditions after considering seasonal changes and source water characteristics.


Assuntos
Substâncias Húmicas , Rios , China , Cidades , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Água
13.
Sci Total Environ ; 771: 145409, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548708

RESUMO

The presence of carcinogenic N-nitrosamines and dissolved organic matter (DOM) in freshwater is a significant concern from the perspective of public health and drinking water treatment plant operation. This study investigated the N-nitrosamines concentration and their precursors' distributions, and DOM composition in four reservoirs located in a southern city of China. A total of 22 renowned precursors were identified. Precursors from industrial and pharmaceutical origins were found to be dominant in all reservoirs; however, traces of pesticide-based precursors, i.e. pirimicarb and cycluron were also found. The distribution of nine N-nitrosamines was substantially different among the reservoirs. N-Nitrosodibutylamine (NDBA), N-Nitrosopiperidine (NPIP), N-Nitrosodimethylamine (NDMA), and N-Nitrosopyrrolidine (NPYR) were abundantly present in all reservoirs. Most of N-nitrosamines except NDMA and N-nitrosodiethylamine (NDEA) were far below the generally accepted cancer risk of 10-6, and NDMA/NDEA were found close to the risk level (10-6). Anthropogenic DOM was dominant in three reservoirs as depicted by a higher biological index (BIX) than the humification index (HIX). By the principle component analysis, BIX appeared as an indicator of N-nitrosamines (except NDEA and NPIP). A strong and direct relationship was observed between the NDMA-formation potential (FP) and concentration of total N-nitrosamines (∑NA), and BIX. These results confirmed that the anthropogenic activities were the leading source of DOM and N-nitrosamines in this city based on land-use.

14.
J Hazard Mater ; 402: 123730, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254762

RESUMO

In this study, impacts of in-situ ozonation applied directly in the membrane tank of a ceramic MBR (Oz-MBR) were assessed to elucidate its implications on micropollutant removal, microbial taxa and membrane fouling. The basic effluent quality (i.e., bulk organics and nutrients) of the MBR without and with in-situ ozonation was comparable. Importantly, pollutant-specific (10-26%) improvement in micropollutant removal was achieved by the Oz-MBR, which could be attributed to the increase in the abundance of microbial taxa responsible for the removal of structurally complex pollutants and/or ozone-assisted oxidation. In-situ ozonation affected the abundance of denitrifying bacteria and functional genes but total nitrogen removal by the Oz-MBR was comparable to that achieved by the control (C)-MBR. Improved mixed liquor properties, and the reduced accumulation of foulants on the membrane surface resulted in membrane fouling alleviation (53%) in the Oz-MBR. In addition, fouling models evaluated for the first time in the case of Oz-MBR indicated that the cake-complete model was suitable to explain membrane fouling mechanism. This comprehensive study demonstrates the performance of MBR coupled with in-situ ozonation, and the obtained results would serve as a useful reference for its implementation at pilot- and/or full-scale.


Assuntos
Microbiota , Ozônio , Reatores Biológicos , Cerâmica , Membranas Artificiais , Águas Residuárias
15.
Sci Total Environ ; 745: 141090, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758744

RESUMO

In this study, the effect of a high concentration of powdered activated carbon (PAC) on pollutant removal and microbial communities was systematically investigated. Micropollutant removal by the 'control' MBR (without PAC addition) was pollutant-specific and was mainly controlled by their molecular properties. The PAC-MBR achieved enhanced removal of micropollutant by 10% (ofloxacin) to 40% (caffeine). Analysis of the microbial communities in the sludge samples collected from both MBRs indicated an increase in the abundance of 24 (out of 31) genera following PAC addition. Notably, bacterial diversity enriched, particularly in the anoxic zone of the PAC-MBR, indicating a positive impact of recirculating mixed liquor containing PAC from the aerobic to the anoxic zone. In addition, PAC improved the abundance of Comamonas and Methanomethylovorans (up to 2.5%) that can degrade recalcitrant micropollutants. According to the quantitative PCR (qPCR) analysis, the copies of functional genes (nirS, nosZ and narG) increased in PAC-MBR. This study demonstrated that MBR could be operated at a high PAC concentration without compromising the pollutant removal and microbial community evolution during wastewater treatment.


Assuntos
Carvão Vegetal , Microbiota , Reatores Biológicos , Membranas Artificiais , Pós , Esgotos , Eliminação de Resíduos Líquidos
16.
Water Res ; 183: 116125, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32650297

RESUMO

This study aims to extend and demonstrate the application of fluorescence spectroscopy for monitoring the water quality of three differently operated full-scale drinking water treatment plants located in the Shenzhen city (China). A ratio of fluorescent dissolved organic matter (FDOM), which describes relative changes in humic-like to protein-like fluorescence, was used to explain mechanisms behind the physicochemical processes. The fluorescence components obtained through individual and combined parallel factor analysis (PARAFAC) modeling revealed the presence of humic-like (C1) and protein-like (C2) structures in the DOM. The C1/C2 ratio provided a direct relationship between the seasonal variations and DOM composition. Wet season generated DOM enriched with humic-like fluorescence, while dry season caused a higher release of protein-like fluorescence. The fluorescence ratio presented unique patterns of DOM in treatment trains. The chemical pretreatment and disinfection unit processes showed a higher tendency to remove the humic-like fluorescence. However, the C1/C2 ratio increased during physical treatment processes such as coagulation-precipitation and sand filtration, indicating preferential removal of protein-like fluorescence. The DOM composition in influent directly (R2 = 0.77) influenced the relative intensities of fluorescence components in the treated water. Compared to the dry season, the wet season caused significant changes in DOM composition and produced treated water enriched with humic-like fluorescence. This fluorescence ratio offers an approach to explore the role of different treatment units and determine the factors affecting the composition of DOM in the surface water and drinking water treatment plants.


Assuntos
Água Potável/análise , Purificação da Água , China , Análise Fatorial , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Qualidade da Água
17.
Water Res ; 183: 116096, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717651

RESUMO

N-nitrosamines have been identified as emerging contaminants with tremendous carcinogenic potential for human beings. This study examined the seasonal changes in the occurrence of N-nitrosamines and N-nitrosodimethylamine formation potential (NDMA-FP) in drinking water resources and potable water from 10 drinking water treatment plants in a southern city of China. The changes in N-nitrosamines are well correlated with dissolved organic matter (DOM), particularly fluorophores, which were measured and compared between traditional fluorescence indices and excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Four of N-nitrosamine species including N-nitrosodimethylamine (NDMA), N-Nitrosodibutylamine (NDBA), N-Nitrosopyrrolidine (NPYR), and N-Nitrosodiphenylamine (NDPhA) are found to be abundant compounds with an average of 29.5% (26.7%), 20.0% (25.2%), 18.9% (16.0%), and 9.0% (9.9%) in the source (and treated) water, respectively. The sum of N-nitrosamines concentration is recorded to be low in the wet season (July-September), whereas the dry season (October-December) provided opposite impacts. EEM-PARAFAC modeling indicated the predominance of humic-like component (C1) in the wet season while in the dry season the water was dominant in protein-like component (C2). All the N-nitrosamines excluding NDPhA and N-Nitrosomorpholine (NMOR) showed a strong association with protein-like component (C2). In contrast, humic-like C1, which was directly influenced by rainfall, was found to be a suitable proxy for NMOR and NDPhA. The results of this study are valuable to understand the correlation between different N-nitrosamines and DOM through adopting fluorescence signatures.


Assuntos
Água Potável/análise , Nitrosaminas/análise , Poluentes Químicos da Água/análise , China , Cromatografia Líquida , Análise Fatorial , Humanos , Substâncias Húmicas , Estações do Ano , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem
18.
Chemosphere ; 260: 127623, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32668363

RESUMO

The global demand of lithium is rising steadily, and many industrially advanced countries may find it hard to secure an uninterrupted supply of lithium for meeting their manufacturing demands. Thus, innovative processes for lithium recovery from a wide range of natural reserves should be explored for meeting the future demands. In this study, a novel integrated approach was investigated by combining nanofiltration (NF), membrane distillation (MD) and precipitation processes for lithium recovery from salt-lake brines. Initially, the brine was filtered with an NF membrane for the separation of lithium ions (Li+) from competing ions such as Na+, K+, Ca2+ and Mg2+. The extent of permeation of metal ions by the NF membrane was governed by their hydrated ionic radii. Rejection by NF membrane was 42% for Li, 48% for Na and 61% for K, while both the divalent cations were effectively rejected (above 90%). Importantly, in the NF-permeate, Mg2+/Li+ mass ratio reduced to less than 6 (suggested for lithium recovery). The result showed that MD can enrich lithium with a concentration of 2.5 for raw brine and 5 for NF-treated brine. Following the enrichment of NF-permeate by the MD membrane, a two-stage precipitation method was used for the recovery of lithium. X-ray diffraction confirmed the precipitation of lithium as well as the formation of lithium carbonate crystals.


Assuntos
Lagos/química , Lítio/análise , Poluentes Químicos da Água/análise , Cátions Bivalentes , Destilação , Íons , Lítio/química , Sais , Sódio , Cloreto de Sódio , Poluentes Químicos da Água/química
19.
Sci Total Environ ; 741: 140233, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570070

RESUMO

Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eletricidade , Eletrodos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
20.
Sci Total Environ ; 718: 137291, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32087584

RESUMO

In biological wastewater treatment systems, extracellular polymeric substances (EPS) are continuously excreted as a response to environmental changes and substrate conditions. It could severely affect the treatment efficacy such as membrane fouling, dewaterability and the formation of carcinogenic disinfection by-products (DBPs). The heterogeneous dissolved organic matter (DOM) with varying size and chemical nature constitute a primary proportion of EPS. In the last few decades, fluorescence spectroscopy has received increasing attention for characterizing these organic substances due to the attractive features of this low-cost spectroscopic approach, including easy sample handling, rapid, non-destructive and highly sensitive nature. In this review, we summarize the application of fluorescence spectroscopy for characterizing EPS and provide the potential implications for online monitoring of water quality along with its limitations. We also link the dynamics of fluorescent dissolved organic matter (FDOM) in EPS with operational and environmental changes in wastewater treatment systems as well as their associations with metal binding, membrane fouling, adsorption, toxicity, and dewaterability. The multiple modes of exploration of fluorescence spectra, such as synchronous spectra with or without coupling with two-dimensional correlation spectroscopy (2D-COS), excitation-emission matrix (EEM) deconvoluted fluorescence regional integration (FRI), and parallel factor analysis (PARAFAC) are also discussed. The potential fluorescence indicators to depict the composition and bulk characteristics of EPS are also of interest. Further studies are highly recommended to expand the application of fluorescence spectroscopy paired with appropriate supplementary techniques to fully unravel the underlying mechanisms associated with EPS.


Assuntos
Águas Residuárias , Adsorção , Matriz Extracelular de Substâncias Poliméricas , Análise Fatorial , Substâncias Húmicas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...