Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572296

RESUMO

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.

2.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567661

RESUMO

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Assuntos
Ipomoea/metabolismo , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/toxicidade , Química Verde , Células HT29 , Humanos , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Picratos/química , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
3.
Int J Biol Macromol ; 171: 44-58, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33373634

RESUMO

Fatty acids-assisted superparamagnetic maghemite (γ-Fe2O3) NPs was biologically synthesized using extract of polyherbal drug Liv52 (L52E). The NPs were characterized by UV-vis spectroscopy, FT-IR, SEM, TEM, EDX, XRD and VSM. The major biological molecules present in L52E analysed by GC-MS were saturated fatty acids (palmitic acid 21.95%; stearic acid 13.99%; myristic acid 1.14%), monounsaturated fatty acid (oleic acid 18.43%), polyunsaturated fatty acid (linoleic acid 20.45%), and aromatic phenol (cardanol monoene 11.92%) that could imply in bio-fabrication and stabilization of γ-Fe2O3 NPs. The FT-IR spectra revealed involvement of carboxylic group of fatty acids, amide group of proteins and hydroxyl group of phenolic compounds that acts as reducing and capping agents. The synthesized NPs were used to investigate their antimicrobial, antibiofilm activity against P. aeruginosa, MRSA and C. albicans and anticancer activity on colon cancer cells (HCT-116) for biomedical applications. Further, molecular docking study was performed to explore the interaction of Fe2O3 NPs with major cell wall components i.e., peptidoglycan and mannoproteins. The docking studies revealed that Fe2O3 interacted efficiently with peptidoglycan and mannoproteins and Fe2O3 get accommodated into catalytic cleft of mannoprotein. Due to magnetic property, the biological activity of γ-Fe2O3 can be further enhanced by applying external magnetic field alone or in amalgamation with other therapeutics drugs.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Glicoproteínas de Membrana/farmacologia , Peptidoglicano/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Humanos , Ácido Linoleico/química , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Glicoproteínas de Membrana/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ácido Mirístico/química , Ácido Oleico/química , Ácido Palmítico/química , Peptidoglicano/química , Fenóis/química , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ácidos Esteáricos/química
4.
Saudi J Biol Sci ; 27(8): 1923-1930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714015

RESUMO

Present study, report the biofabrication of zinc oxide nanoparticles from aqueous leaf extract of Melia azedarach (MaZnO-NPs) through solution combustion method and their novel application in preventing the growth of seed-borne fungal pathogens of soybean (Cladosporium cladosporioides and Fusarium oxysporum). The standard blotter method was employed to isolate fungi and was identified through molecular techniques. The characterization of MaZnO-NPs was carried out by UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The physicochemical characterization confirmed the particles were of high purity and nano size (30-40 nm) with a hexagonal shape. The synthesized MaZnO-NPs inhibited the growth of C. cladosporioides and F. oxysporum in a dose dependent manner. Biomass, ergosterol, lipid peroxidation, intracellular reactive oxygen species and membrane integrity determination upon MaZnO-NPs treatment offered significant activities there by confirming the mechanism of action against the test pathogens. In conclusion, due to the effectiveness of MaZnO-NPs in controlling the growth of C. cladosporioides and F. oxysporum, the synthesized MaZnO-NPs provides insight towards their potential application in agriculture and food industries.

5.
Antibiotics (Basel) ; 9(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429514

RESUMO

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.

6.
Antibiotics (Basel) ; 9(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120845

RESUMO

Abstract: Plant-based synthesis of eco-friendly nanoparticles has widespread applications in many fields, including medicine. Biofilm-a shield for pathogenic microorganisms-once formed, is difficult to destroy with antibiotics, making the pathogen resistant. Here, we synthesized gold nanoparticles (AuNPs) using the stem of an Ayurvedic medicinal plant, Tinospora cordifolia, and studied the action of AuNPs against Pseudomonas aeruginosa PAO1 biofilm. The synthesized AuNPs were characterized by techniques such as ultraviolet-visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray diffraction, X-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy. The AuNPs were spherically shaped with an average size of 16.1 nm. Further, the subminimum inhibitory concentrations (MICs) of AuNPs (50, 100, and 150 µg/mL) greatly affected the biofilm-forming ability of P. aeruginosa, as observed by crystal violet assay and SEM, which showed a decrease in the number of biofilm-forming cells with increasing AuNP concentration. This was further justified by confocal laser scanning microscopy (CLSM), which showed irregularities in the structure of the biofilm at the sub-MIC of AuNPs. Further, the interaction of AuNPs with PAO1 at the highest sub-MIC (150 µg/mL) showed the internalization of the nanoparticles, probably affecting the tendency of PAO1 to colonize on the surface of the nanoparticles. This study suggests that green-synthesized AuNPs can be used as effective nano-antibiotics against biofilm-related infections caused by P. aeruginosa.

7.
Biomolecules ; 10(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092985

RESUMO

Cinnamomum verum plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.25-3.28 eV. Fourier transmission infrared spectroscopy shows the presence of Zn-O bond within the wave number of 500 cm-1. SEM images show the specific agglomeration of particles which was also confirmed by TEM studies. The green synthesized ZnO-NPs inhibited the growth of Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 125 µg mL-1 and 62.5 µg mL-1, respectively. The results indicate the prepared ZnO-NPs can be used as a potential antimicrobial agent against harmful pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cinnamomum zeylanicum/química , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Química Verde , Humanos , Nanopartículas/ultraestrutura , Casca de Planta/química , Extratos Vegetais/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...