Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 201: 107859, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406405

RESUMO

Persian walnut is a drought-sensitive species with considerable genetic variation in the photosynthesis and water use efficiency of its populations, which is largely unexplored. Here, we aimed to elucidate changes in the efficiency of photosynthesis and water content using a diverse panel of 60 walnut families which were submitted to a progressive drought for 24 days, followed by two weeks of re-watering. Severe water-withholding reduced leaf relative water content (RWC) by 20%, net photosynthetic rate (Pn) by 50%, stomatal conductance (gs) by 60%, intercellular CO2 concentration (Ci) by 30%, and transpiration rate (Tr) by 50%, but improved water use efficiency (WUE) by 25%. Severe water-withholding also inhibited photosystem II functionality as indicated by reduced quantum yield of intersystem electron transport (φEo) and transfer of electrons per reaction center (ET0/RC), also enhanced accumulation of QA (VJ) resulted in the reduction of the photosynthetic performance (PIABS) and maximal quantum yield of PSII (FV/FM); while elevated quantum yield of energy dissipation (φDo), energy fluxes for absorption (ABS/RC) and dissipated energy flux (DI0/RC) in walnut families. Cluster analysis classified families into three main groups (tolerant, moderately tolerant, and sensitive), with the tolerant group from dry climates exhibiting lesser alterations in assessed parameters than the other groups. Multivariate analysis of phenotypic data demonstrated that RWC and biophysical parameters related to the chlorophyll fluorescence such as FV/FM, φEo, φDo, PIABS, ABS/RC, ET0/RC, and DI0/RC represent fast, robust and non-destructive biomarkers for walnut performance under drought stress. Finally, phenotype-environment association analysis showed significant correlation of some photosynthetic traits with geoclimatic factors, suggesting a key role of climate and geography in the adaptation of walnut to its habitat conditions.


Assuntos
Clorofila , Juglans , Secas , Água , Fotossíntese , Folhas de Planta
2.
Iran J Biotechnol ; 21(2): e3291, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37228633

RESUMO

Background: The occurrence of aflatoxins in food products is a silent threat to human health worldwide. A range of strategies has been introduced to address the bioavailability of aflatoxins, which are considered microbial tools to provide a low-cost and promising approach. Objectives: The present study focused on the separation of yeast strains from the homemade cheese rind layer to investigate the ability of native yeasts to eliminate AB1 and AM1 from simulated gastrointestinal fluids. Material and Methods: Homemade cheese samples were prepared from different locations in Tehran provinces and yeast strains were isolated and identified through the biochemical methods and molecular analysis of internal transcribed spacer and D1/D2 domain of 26S rDNA regions. Isolated strains were screened using simulated gastrointestinal fluids, and the ability of yeast strains to absorb aflatoxin was evaluated. Results: Out of 13 strains, 7 yeast strains were not affected by 5 ppm AFM1 while 11 strains did not show any significant response to 5 mg.L-1 (ppm) of AFB1. On the other hand, 5 strains were able to successfully tolerate 20 ppm AFB1. Candidate yeasts showed different abilities to remove aflatoxins B1 and M1. In addition, C. lusitaniae, G. geotrichum, G. candidum, and C. sanyaensis exhibited a significant ability to detoxify aflatoxins from the gastrointestinal fluid, respectively. Conclusion: Our data suggest that yeast communities with essential effects on the quality of homemade cheese appear to be precise candidates for the potential elimination of aflatoxins from the gastrointestinal fluid.

3.
Mol Biol Rep ; 50(3): 2283-2291, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36576674

RESUMO

BACKGROUND: Stevia rebaudiana is a medicinal herb that accumulates non-caloric sweeteners called steviol glycosides (SGs) which are approximately 300 times sweeter than sucrose. This study used alginate (ALG) as an elicitor to increase steviol glycosides accumulation and elucidate gene transcription in the steviol glycosides biosynthesis pathway. METHODS AND RESULTS: To minimize the grassy taste associated with stevia sweeteners, plantlets were grown in complete darkness. ALG was applied to stevia plants grown in suspension culture with a Murashige and Skoog (MS) medium to determine its effect on SGs' content and the transcription profile of SG-related genes using the HPLC and RT-qPCR methods, respectively. Treatment with alginate did not significantly affect plantlet growth parameters such as shoot number, dry and fresh weight. Rebaudioside A (Reb A) content increased approximately sixfold in the presence of 1g L-1 alginate and KS, KAH, and UGT74G1 genes showed significant up-regulation. When the concentration was increased to 2g L-1, the transcription of KO and UGT76G1, responsible for the conversion of stevioside to Reb A, was increased about twofold. CONCLUSIONS: The current study proposes that adding alginate to the MS suspension medium can increase Reb A levels by altering the SG biosynthesize pathway's transcription profile. The present experiment provides new insights into the biochemical and transcriptional response mechanisms of suspension-cultured stevia plants to alginate.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/genética , Stevia/metabolismo , Edulcorantes/farmacologia , Edulcorantes/química , Edulcorantes/metabolismo , Alginatos , Glucosídeos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glicosídeos/farmacologia , Folhas de Planta/metabolismo
4.
Sci Rep ; 12(1): 18901, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344551

RESUMO

Studying microbial diversity and the effects of external factors on the microbiome could expand our understanding of environmental alterations. Silt and sand are mineral particles that form soil texture and even though most of the soils on earth contain a fraction of them and some other soils form almost by them, their effects on the microbiome remained to elucidate. In this study, the bacterial biodiversity of sand and silt clay soils was investigated. Furthermore, their effects on plant growth have been determined. Our data showed that biodiversity and biomass of microbiome are higher in silt-based soil. It is interesting that the pseudomonas genera only exist in silt-based soil while it is in the absence of sand-based soil. In contrast, B. thuringiensis could be found in sand-based soil while it is not found in silt texture. Our data also demonstrated that there are no significant changes in stress response between the two groups however, differential physiological changes in plants inoculated with silt and sand based bacterial isolates have been observed. This data could indicate that smaller size particles could contain more bacteria with higher biodiversity due to providing more surfaces for bacteria to grow.


Assuntos
Microbiologia do Solo , Solo , Areia , Bactérias , Biodiversidade
5.
Front Microbiol ; 13: 984925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312986

RESUMO

The microbiome of soil has a fundamental role in maintaining the health of soil and plants. While the diversity of microbes is one of the most important factors in the environment, little is known about the effects of elevation on the microbiome and the impact of the affected microbiome on plants. The main goal of this study is to expand our knowledge of what happens to the soil bacterial community along an altitudinal gradient and investigate their possibly different impacts on plant growth. Bacteria from soils at various altitudes have been isolated, characterized, and identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) to determine the effects of an elevational gradient on the microbiome and plant growth. Furthermore, their effects have been investigated by isolates assessment on maize, wheat, and canola. Based on our results, higher altitude results in a higher diversity of the microbiome and lower bacteria biomass. Bacillus cereus is found in abundance in arid and semi-arid samples. Interestingly, enhanced diversity in higher altitudes shows similarity in response to environmental stress and tolerates these factors well. Furthermore, the inoculation of these bacteria could enhance the overall growth of plants. We prove that bacterial communities could change their biomass and diversity in response to altitude changes. These indicate evolutionary pressure as these bacteria could tolerate stress factors well and have a better relationship with plants.

6.
Hortic Res ; 9: uhac124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928405

RESUMO

Uncovering the genetic basis of photosynthetic trait variation under drought stress is essential for breeding climate-resilient walnut cultivars. To this end, we examined photosynthetic capacity in a diverse panel of 150 walnut families (1500 seedlings) from various agro-climatic zones in their habitats and grown in a common garden experiment. Photosynthetic traits were measured under well-watered (WW), water-stressed (WS) and recovery (WR) conditions. We performed genome-wide association studies (GWAS) using three genomic datasets: genotyping by sequencing data (∼43 K SNPs) on both mother trees (MGBS) and progeny (PGBS) and the Axiom™ Juglans regia 700 K SNP array data (∼295 K SNPs) on mother trees (MArray). We identified 578 unique genomic regions linked with at least one trait in a specific treatment, 874 predicted genes that fell within 20 kb of a significant or suggestive SNP in at least two of the three GWAS datasets (MArray, MGBS, and PGBS), and 67 genes that fell within 20 kb of a significant SNP in all three GWAS datasets. Functional annotation identified several candidate pathways and genes that play crucial roles in photosynthesis, amino acid and carbohydrate metabolism, and signal transduction. Further network analysis identified 15 hub genes under WW, WS and WR conditions including GAPB, PSAN, CRR1, NTRC, DGD1, CYP38, and PETC which are involved in the photosynthetic responses. These findings shed light on possible strategies for improving walnut productivity under drought stress.

7.
BMC Plant Biol ; 22(1): 367, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879654

RESUMO

Maize (Zea mays) growth performance has been hindered due to the high soil salinity. Salinity is one of the most severe abiotic stresses that has led to growth imbalance and profitability of harvests in arid and semi-arid regions. Plants have taken advantage of salt-tolerant bacteria as plant growth-promoters to enhance growth and reduce the adverse effects of salinity through the regulation of some biochemical, physiological, and molecular features. Preferences for non-chemical, eco-friendly, and economical approaches have caused the inquiry of the Bacillus genus as a joint group of plant growth-promoting rhizobacteria known to alleviate salt-stress impacts. In the present study, halotolerant Bacillus strains were isolated from salt-marshland soil and characterized for their physiological, molecular, and biochemical properties. Twenty-four bacterial isolates collected from high saline fields of salt marshland were analyzed by MALDI-TOF MS proteome analysis, which confirmed the taxonomic affiliation with Bacillus cereus, Bacillus subtilis, Bacillus atrophaeus, and Bacillus thorngiensis. Applying the isolates on maize plants as bio-inoculant bacteria obviously increased the growth parameters (P < 0.01). Pot experiments showed that isolates 74 and 90 were the most prominent strains to minimize the harmful effects of salinity. Its effects are heightening the potassium/sodium ratio and K-Na selectivity in shoots and roots measured by flame atomic absorption photometry (AAS). Accordingly, Bacillus cereus isolate 74 showed a maximum increase in dry weights of the shoot (133.89%), root (237.08%), length of the shoot (125%), and root (119.44%) compared to the control condition. Our findings suggest that bacteria isolated from marshland may be an economical and simple means to increase plant growth and resistance to high salinity soil conditions.


Assuntos
Bacillus , Zea mays , Bacillus/fisiologia , Bactérias , Raízes de Plantas , Salinidade , Estresse Salino , Solo/química , Microbiologia do Solo
8.
Iran J Biotechnol ; 17(1): e1734, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31457040

RESUMO

BACKGROUND: Root to shoot connection and transfer of information seems to be taken place mostly via the transmissions of signal molecules, secondary metabolites, amino acids, hormones and proteins, through xylem sap. Examination of earlier reports is indicative of relatively high levels of conservation in xylem sap protein compositions. Apparently these protein molecules are being synthesized in roots in response to environmental changes and get transported to aerial plant parts after secretion into xylem sap. OBJECTIVES: In order to comprehend this so-called passive signaling, some questions need to be answered: 1) Do these proteins have the capability to act as signals? 2) How much energy does root spend for the biosynthesis of the secreted proteins? How similar is the amount of energy that root cells spent for the biosynthesis of intra- and extra-cellular proteins? MATERIALS AND METHODS: Reported xylem sap proteins curated from Arabidopsis, maize and soybean. Their sequences were put under scrutiny in terms of considering their mobility, and physical and chemical properties. Metabolic energy required for their biosynthesis along with the energy hidden in their peptide bonds were calculated and compared with random non-xylem sap proteins as control. RESULTS: Xylem sap proteins were significantly smaller than the root proteins, while they were bigger in size when compared to the leaf group. Xylem protein pIs were significantly higher than the control proteins in different plants. Similarly, the protein stability was higher for xylem sap proteins in comparison with roots and leaves in all analyzed plants, except for soybean that the stability was indifferent between xylem and root. The data were suggestive a significantly lower energy consumption for the synthesis of xylem sap proteins. CONCLUSIONS: Lower energy consumption may suggest an economical route of communication between roots and shoots in plants that mainly rely on symplastic signaling.

9.
Biol Proced Online ; 21: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31337987

RESUMO

BACKGROUND: Salinity as a most significant environmental challenges affects the growth and productivity of plants worldwide. In this study, the ionic and iso-osmotic effects of salt stress were investigated in Aeluropus littoralis L., a halophyte grass species from Poaceae family, by cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique. To dissect the two different effects (ionic and osmotic) exerted by salt stress, various ionic agents including 200 and 400 mM sodium chloride (NaCl), 200 and 400 mM potassium chloride (KCl) as well as 280 and 406 gl- 1 (- 0.9 and - 1.4 MPa) polyethylene glycol 6000 (PEG) as their iso-osmotic concentrations were applied. RESULTS: Application of KCl and PEG significantly reduced the fresh weight (FW) of A. littoralis seedlings compared to control while NaCl treatment markedly enhanced the FW. At the transcriptome level, different observations of changes in gene expression have been made in response of A. littoralis to ionic and osmotic stresses. Out of 69 transcript derived fragments (TDFs), 42 TDFs belong to 9 different groups of genes involved in metabolism (11.6%), transcription (10.2%), ribosomal protein (8.7%), protein binding (8.7%) transporter (5.8%), translation (5.8%), signal transduction (4.3%), nucleosome assembly protein (2.9%) and catabolism (2.9%). The 44 and 28 percent of transcripts were expressed under ionic stress (NaCl-specific and KCl-specific) and osmotic stress (common with NaCl, KCl and PEG), respectively which indicating a greater response of plants to ionic stress than osmotic stress. Expression pattern of eight candidate TDFs including; SYP81, CAND1, KATN, ISB1, SAMDC, GLY1, HAK18 and ZF30 was evaluated by RT-qPCR at high salinity levels and recovery condition. CONCLUSION: Differential regulation of these TDFs was observed in root and shoot which confirm their role in salt stress tolerance and provide initial insights into the transcriptome of A. littoralis. Expression pattern of ionic and osmotic-related TDFs at A. littoralis can be taken as an indication of their functional relevance at different salt and drought stresses.

10.
Sci Rep ; 9(1): 6376, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015545

RESUMO

Persian plateau (including Iran) is considered as one of the primary centers of origin of walnut. Sampling walnut trees originating from this arena and exploiting the capabilities of next-generation sequencing (NGS) can provide new insights into the degree of genetic variation across the walnut genome. The present study aimed to explore the population structure and genomic variation of an Iranian collection of Persian walnut (Juglans regia L.) and identify loci underlying the variation in nut and kernel related traits using the new Axiom J. regia 700K SNP genotyping array. We genotyped a diversity panel including 95 walnut genotypes from eight Iranian provinces with a variety of climate zones. A majority of the SNPs (323,273, 53.03%) fell into the "Poly High Resolution" class of polymorphisms, which includes the highest quality variants. Genetic structure assessment, using several approaches, divided the Iranian walnut panel into four principal clusters, reflecting their geographic partitioning. We observed high genetic variation across all of the populations (HO = 0.34 and HE = 0.38). The overall level of genetic differentiation among populations was moderate (FST = 0.07). However, the Semnan population showed high divergence from the other Iranian populations (on average FST = 0.12), most likely due to its geographical isolation. Based on parentage analysis, the level of relatedness was very low among the Iranian walnuts examined, reflecting the geographical distance between the Iranian provinces considered in our study. Finally, we performed a genome-wide association study (GWAS), identifying 55 SNPs significantly associated with nut and kernel-related traits. In conclusion, by applying the novel Axiom J. regia 700K SNP array we uncovered new unexplored genetic diversity and identified significant marker-trait associations for nut-related traits in Persian walnut that will be useful for future breeding programs in Iran and other countries.


Assuntos
Genoma de Planta , Estudo de Associação Genômica Ampla , Juglans/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Frutas/genética , Variação Genética , Genética Populacional , Genótipo , Geografia , Irã (Geográfico) , Análise Multivariada , Fenótipo , Análise de Componente Principal
11.
Sci Rep ; 9(1): 1792, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741989

RESUMO

It is commonly accepted that bacteria actively interact with plant host and have beneficial effects on growth and adaptation and grant tolerance to various biotic and abiotic stresses. However, the mechanisms of plant growth promoting bacteria to communicate and adapt to the plant environment are not well characterized. Among the examined bacteria isolates from different saline soils, Arthrobacter nitroguajacolicus was selected as the best plant growth-promoting bacteria under salt stress. To study the effect of bacteria on wheat tolerance to salinity stress, bread wheat seeds were inoculated with A. nitroguajacolicus and grown under salt stress condition. Comparative transcriptome analysis of inoculated and un-inoculated wheat roots under salt stress showed up-regulation of 152 genes whereas 5 genes were significantly down-regulated. Many genes from phenylpropanoid, flavonoid and terpenoid porphyrin and chlorophyll metabolism, stilbenoid, diarylheptanoid metabolism pathways were differentially expressed within inoculated roots under salt stress. Also, a considerable number of genes encoding secondary metabolites such as phenylpropanoids was detected. They are known to take part in lignin biosynthesis of the cell wall as well as antioxidants.


Assuntos
Arthrobacter/fisiologia , Raízes de Plantas/fisiologia , Estresse Salino/fisiologia , Transcrição Gênica , Triticum/fisiologia , Genes de Plantas , Raízes de Plantas/metabolismo , Tolerância ao Sal , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Regulação para Cima
12.
Iran J Biotechnol ; 16(2): e1422, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30805382

RESUMO

BACKGROUND: Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world and in Iran, as well. It is classified as a drought semi-tolerant crop; however, its yield is adversely affected by drought stress. Understanding the initial events in sensing stress and the related physiologic and biochemical events thereafter, is crucial in designing drought stress breeding programs. Transcription factors are master molecules directly involved in the plant responses under drought stress, from signal perception and transduction to the regulation of physiologic processes. OBJECTIVE: The expression pattern of some bZip transcription factors in response to osmotic stress was investigated in sunflower. MATERIAL AND METHODS: Employing real-time PCR to monitor, the response of 10 bZIP transcription factors was performed under different osmotic stress conditions including -0.3, 0.9, and 1.2 MPa. Whole seedling was sampled at 6, 12, and 24 h after the osmotic condition application. RESULTS: Exposure to osmotic potential of 0.9 MPa for 24 h caused a reduction in the fresh weight of the seedling. Among the evaluated genes, eight genes, bz-497, bz-502, bz-485, bz-499, bz-492, bz-504, bz-505, and bz-509 appeared as the osmotic stress responsive transcription factor. Changes in the expression of the genes under 0.3 MPa was observed for four genes. Most of the osmotic responsive genes appeared to be up-regulated. Most of responsiveness in the gene expression was happened under 0.9 MPa of the osmotic stress which is corresponding to fresh weight reduction in the seedlings. Among the investigated genes, two genes was identified to have possible roles in sensitive response of sunflower against drought stress. CONCLUSIONS: It was a focus to have systemic view on the complex response of the plant to abiotic stress, and avoidance of the single gene analysis. Also, the importance of molecular data in molecular breeding procedures toward achievement of the stress tolerant lines was highlighted.

13.
World J Microbiol Biotechnol ; 34(1): 16, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29288281

RESUMO

Unfortunately, one of the author's name had been published incorrectly as "Peyman Abaszadeh Dahaji". The correct name is " Payman Abbaszadeh Dahaji.

14.
Eur J Med Chem ; 138: 830-853, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28735214

RESUMO

Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that has been functionally implicated in the regulation of energy homeostasis. Herein is described the development of indazole-based N-alkylthiazolidenediones, which function in biochemical assays as selective inverse agonists against this receptor. Series optimization provided several potent analogues that inhibited the recruitment of a co-activator peptide fragment in vitro (IC50s < 50 nM) and reduced fasted circulating insulin and triglyceride levels in a sub-chronic pre-diabetic rat model when administered orally (10 mg/kg). A multi-parametric optimization strategy led to the identification of 50 as an advanced lead, which was more extensively evaluated in additional diabetic models. Chronic oral administration of 50 in two murine models of obesity and insulin resistance improved glucose control and reduced circulating triglycerides with efficacies similar to that of rosiglitazone. Importantly, these effects were attained without the concomitant weight gain that is typically observed with the latter agent. Thus, these studies provide additional support for the development of such molecules for the potential treatment of metabolic diseases.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Indazóis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Indazóis/administração & dosagem , Indazóis/química , Ligantes , Masculino , Camundongos , Camundongos Obesos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Relação Estrutura-Atividade , Receptor ERRalfa Relacionado ao Estrogênio
15.
Physiol Mol Biol Plants ; 22(4): 583-593, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27924131

RESUMO

The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l-1 BAP and 0.05 mg l-1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l-1 BAP and 0.07 mg l-1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50-100 mg l-1 PG with different concentrations of IBA or NAA at intervals of 30-60 days. Significant increase in shoot length was detected after 45-60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l-1 IBA and 100 mg l-1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l-1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25-30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.

17.
Comput Biol Chem ; 61: 1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26706775

RESUMO

The standard method of the global quantitative analysis of gene expression at the protein level combines high-resolution two-dimensional gel electrophoresis (2DE) with mass spectrometric identification of protein spots. One of the major concerns with the application of gel-based proteomics is the need for the analytical and biological accuracy of the datasets. We mathematically and empirically simulated the possibility of the technical regulations of gene expression using 2DE. Our developed equation predicted a detectable alteration in the quantity of protein spots in response to a new protein added in, with various amounts. Testing the predictability of the developed equation, we observed that a new protein could form deceptive expression profiles, classified using prevalent tools for the analysis of 2DE results. In spite of the theoretically predicted overall reduction of proteins that resulted from adding the new protein, the empirical data revealed differential amount of proteins when various quantities of the new protein were added to the protein sample. The present work emphasize that employment of 2DE would not be a reliable approach for biological samples with extensive proteome alterations such as the developmental and differentiation stages of cells without depletion of high abundant proteins.


Assuntos
Expressão Gênica , Proteômica , Eletroforese em Gel Bidimensional , Géis
18.
Saudi J Biol Sci ; 21(5): 394-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25313273

RESUMO

Plant sodium transporters activity is one of the most important salt tolerance mechanisms to keep normal status of cytosolic sodium content. In the present study, expression pattern of genes encoding Na(+)/H(+) antiporters in the plasma membrane (SOS1 gene), vacuolar membrane (NHX1 gene) and H(+)-ATPase pump (VHA gene) in Aeluropus littoralis under different treatments of NaCl was measured by the semi-quantitative RT-PCR method. Our results indicated that root and shoot sodium contents were increased along with increasing salinity pressure. In response to 200 and 400 mM NaCl, mRNA level of SOS1 and NHX1 was increased in the shoot and root tissues, while VHA transcripts were increased only under 400 mM of NaCl. Transcripts of VHA-c and NHX1 in root were higher than shoot in all treatments. In general, our results indicated that transcriptional level of SOS1, and NHX1 genes induced in parallel with VHA expression may be involved in controlling cytosolic Na(+) concentration in A. littoralis.

19.
Ecotoxicol Environ Saf ; 108: 335-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25124680

RESUMO

The increasing use of silver nanoparticles, (AgNPs), will inevitably result in their release into the environment and thereby cause the exposure to plants. It was claimed that using AgNPs is a safe and efficient method to preserve and treat agents of disease in agriculture. This study tries to understand the protein populations and sub-populations and follow up environmental AgNPs stresses. To accomplish these, the action of homemade spherical AgNPs colloidal suspension against Oryza sativa L. was investigated by a proteomic approach (2-DE and NanoLC/FT-ICR MS identification). Twenty-eight responsive (decrement/increment in abundance) proteins were identified. Proteomic results revealed that an exposure of O. sativa L., root with different concentrations of AgNPs resulted in an accumulation of protein precursors, indicative of the dissipation of a proton motive force. The identified proteins are involved in oxidative stress tolerance, Ca(2+) regulation and signaling, transcription and protein degradation, cell wall and DNA/RNA/protein direct damage, cell division and apoptosis. The expression pattern of these proteins and their possible involvement in the nontoxicity mechanisms were discussed.


Assuntos
Nanopartículas Metálicas/toxicidade , Oryza/efeitos dos fármacos , Prata/toxicidade , Apoptose , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Espectrometria de Massas , Nanopartículas Metálicas/química , Oryza/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Proteômica
20.
Ecotoxicol Environ Saf ; 100: 122-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290895

RESUMO

Emerging technologies in functional genomics and proteomics provide a way of achieving high-throughput analyses, understanding effects on protein populations and sub-populations and follow up environmental stresses. To accomplish these, the action of homemade spherical Silver nanoparticles colloidal suspension (AgNPs) against Bacillus thuringiensis (isolate from Oryza sativa L. rhizosphere) was investigated by a proteomic approach (2-DE and NanoLC/FT-ICR MS identification). Thirty four responsive (up/down regulated) proteins were identified. Proteomic results revealed that an exposure of B. thuringiensis cells with different concentrations of AgNPs resulted in an accumulation of envelope protein precursors, indicative of the dissipation of a proton motive force. Identified proteins are involved in oxidative stress tolerance, metal detoxification, transcription and elongation processes, protein degradation, cytoskeleton remodeling and cell division. The expression pattern of these proteins and their possible involvement in the nontoxicity mechanisms were discussed.


Assuntos
Bacillus thuringiensis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade , Proteoma/efeitos dos fármacos , Prata/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...