Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(1): 258-63, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18172197

RESUMO

Toll-like receptors (TLRs) initiate immune responses by recognizing pathogen-associated molecules, but the molecular basis for recognition is poorly understood. In particular, it is unclear how receptor-ligand interactions lead to the initiation of downstream signaling. Here, we describe the mechanism by which TLR3 recognizes its ligand, double-stranded RNA (dsRNA), and forms an active signaling complex. We show that dsRNA binds saturably, specifically, and reversibly to a defined ligand-binding site (or sites) on the TLR3 ectodomain (TLR3ecd). Binding affinities increase with both buffer acidity and ligand size. Purified TLR3ecd protein is exclusively monomeric in solution, but through a highly cooperative process, it forms dimers when bound to dsRNA, and multiple TLR3ecd dimers bind to long dsRNA strands. The smallest dsRNA oligonucleotides that form stable complexes with TLR3ecd (40-50 bp) each bind one TLR3ecd dimer, and these are also the smallest oligonucleotides that efficiently activate TLR3 in cells. We conclude that TLR3 assembles on dsRNA as stable dimers and that the minimal signaling unit is one TLR3 dimer.


Assuntos
RNA de Cadeia Dupla/química , Receptor 3 Toll-Like/metabolismo , Sítios de Ligação , Soluções Tampão , Linhagem Celular , Separação Celular , Cromatografia em Gel , Reagentes de Ligações Cruzadas/farmacologia , DNA de Cadeia Simples/química , Dimerização , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Modelos Biológicos , Oligonucleotídeos/química , Receptor 3 Toll-Like/química , Receptor 4 Toll-Like/química
2.
Proc Natl Acad Sci U S A ; 103(23): 8792-7, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16720699

RESUMO

Pathogen recognition by Toll-like receptors (TLRs) initiates innate immune responses that are essential for inhibiting pathogen dissemination and for the development of acquired immunity. The TLRs recognize pathogens with their N-terminal ectodomains (ECD), but the molecular basis for this recognition is not known. Recently we reported the x-ray structure for unliganded TLR3-ECD; however, it has proven difficult to obtain a crystal structure of TLR3 with its ligand, dsRNA. We have now located the TLR3 ligand binding site by mutational analysis. More than 50 single-residue mutations have been generated throughout the TLR3-ECD, but only two, H539E and N541A, resulted in the loss of TLR3 activation and ligand binding functions. These mutations locate the dsRNA binding site on the glycan-free, lateral surface of TLR3 toward the C terminus and suggest a model for dsRNA binding and TLR3 activation.


Assuntos
RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/metabolismo , Sítios de Ligação , Humanos , Proteínas de Repetições Ricas em Leucina , Ligantes , Modelos Moleculares , Mutação/genética , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas/genética , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Sulfatos/metabolismo , Receptor 3 Toll-Like/genética
3.
J Endotoxin Res ; 12(6): 375-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17254392

RESUMO

Toll-like receptors (TLRs), type I integral membrane receptors, recognize pathogen associated molecular patterns (PAMPs). PAMP recognition occurs via the N-terminal ectodomain (ECD) which initiates an inflammatory response that is mediated by the C-terminal cytosolic signaling domain. To understand the molecular basis of PAMP recognition, we have begun to define TLR-ECD structurally. We have solved the structure of TLR3-ECD, which recognizes dsRNA, a PAMP associated with viral pathogens. TLR3-ECD is a horseshoe-shaped solenoid composed of 23 leucine-rich repeats (LRRs). The regular LRR surface is disrupted by two insertions at LRR12 and LRR20 and 11 N-linked carbohydrates. Of note, one side of the ECD is carbohydrate-free and could form an interaction interface. We have shown that TLR3-ECD binds directly to pI:pC, a synthetic dsRNA ligand, but not to p(dI):p(dC). Without a TLR3-dsRNA complex structure, we can only speculate how ligand binds. Analysis of the unliganded structure reveals two patches of basic residues and two binding sites for phosphate backbone mimics, sulfateions, that may be capable of recognizing ligand. Mutational and co-crystallization studies are currently underway to determine how TLR3 binds its ligand at the molecular level.


Assuntos
Espaço Extracelular/química , Receptor 3 Toll-Like/química , Humanos , Modelos Moleculares , Conformação Proteica , Receptor 5 Toll-Like/química
4.
Proc Natl Acad Sci U S A ; 102(31): 10976-80, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16043704

RESUMO

Innate immunity is the first line of defense against invading pathogens. Toll-like receptors (TLRs) act as sentinels of the innate immune system, sensing a variety of ligands from lipopolysaccharide to flagellin to dsRNA through their ligand-binding domain that is composed of leucine-rich repeats (LRRs). Ligand binding initiates a signaling cascade that leads to the up-regulation of inflammation mediators. In this study, we have expressed and crystallized the ectodomain (ECD) of human TLR3, which recognizes dsRNA, a molecular signature of viruses, and have determined the molecular structure to 2.4-A resolution. The overall horseshoe-shaped structure of the TLR3-ECD is formed by 23 repeating LRRs that are capped at each end by specialized non-LRR domains. The extensive beta-sheet on the molecule's concave surface forms a platform for several modifications, including insertions in the LRRs and 11 N-linked glycans. The TLR3-ECD structure indicates how LRR loops can establish distinct pathogen recognition receptors.


Assuntos
Glicoproteínas de Membrana/química , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Ligantes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor 3 Toll-Like , Receptores Toll-Like
5.
J Immunol Methods ; 298(1-2): 47-60, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15847796

RESUMO

Intoxication of mammalian cells by Bacillus anthracis requires the coordinate activity of three distinct bacterial proteins: protective antigen (PA), edema factor (EF), and lethal factor (LF). Among these proteins, PA has become the major focus of work on monoclonal antibodies and vaccines designed to treat or prevent anthrax infection since neither EF nor LF is capable of inducing cellular toxicity in its absence. Here, we present the development of a sensitive, precise, and biologically relevant bioassay platform capable of quantifying antibody-mediated PA neutralization. This bioassay is based on the ability of PA to bind and shuttle EF, a bacterial adenylate cyclase, into mammalian cells leading to an increase in cAMP that can be quantified using a sensitive chemiluminescent ELISA. The results of this study indicate that the cAMP-induction assay possesses the necessary performance characteristics for use as both a potency-indicating release assay in a quality control setting and as a surrogate pharmacodynamic marker for ensuring the continued bioactivity of therapeutic antibodies against PA during clinical trials.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Bioensaio/métodos , AMP Cíclico/metabolismo , Venenos de Víboras/metabolismo , Animais , Bacillus anthracis/imunologia , Células CHO , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Venenos de Víboras/imunologia
6.
Protein Expr Purif ; 38(1): 145-52, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15477093

RESUMO

Anthrax is caused by the gram-positive, spore-forming bacterium, Bacillus anthracis. The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor. Current vaccines against anthrax use PA as their primary component since it confers protective immunity. In this work, we expressed soluble, recombinant PA in relatively high amounts in the periplasm of E. coli from shake flasks and bioreactors. The PA protein was purified using Q-Sepharose-HP and hydroxyapatite chromatography, and routinely found to be 96-98% pure. Yields of purified PA varied depending on the method of production; however, medium cell density fermentations resulted in approximately 370 mg/L of highly pure biologically active PA protein. These results exhibit the ability to generate gram quantities of PA from E. coli.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Toxinas Bacterianas/isolamento & purificação , Escherichia coli/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/biossíntese , Toxinas Bacterianas/biossíntese , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Fermentação , Dados de Sequência Molecular , Periplasma/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...