Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 5(5): fcad222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37794925

RESUMO

LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor ('ear-of-the-lynx' sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the 'ear-of-the-lynx' sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction.

2.
Iran J Basic Med Sci ; 24(9): 1190-1195, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35083005

RESUMO

OBJECTIVES: Infantile neuroaxonal degeneration (INAD) is a rare subgroup of neurodegeneration with brain iron accumulation (NBIA) disorders. This progressive disorder may develop during the early years of life. Affected individuals mostly manifest developmental delay and/or psychomotor regression as well as other neurological deficits. In the present study, we discussed 3 INAD patients diagnosed before the age of 10 by using Whole-Exome Sequencing (WES). MATERIALS AND METHODS: We evaluated 3 pediatric patients with clinical phenotypes of INAD who underwent WES. Sanger sequencing was performed for co-segregation analysis of the variants in the families. An in-silico study was conducted for identification of the molecular function of the identified genetic variants in the PLA2G6 gene. RESULTS: We detected three novel genetic variants in the PLA2G6 gene including a homozygous missense (NM_003560.2; c.1949T>C; p.Phe650Ser), a splicing (NM_001349864; c.1266-1G>A) and a frameshift variant (NM_003560.4; c.1547_1548dupCG; p.Gly517ArgfsTer29). Since the variants were not previously reported in literature or population databases, we performed in-silico studies for these variants and demonstrated their potential pathogenicity. CONCLUSION: The current study reports novel genetic variants in the PLA2G6 gene in the Iranian population, emphasizing the importance of high-throughput genetic testing in rare diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...