Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(720): eadf3357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910599

RESUMO

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular
3.
Blood ; 139(17): 2691-2705, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35313337

RESUMO

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Assuntos
Plaquetas , Trombose , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Plaquetas/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo
4.
Autophagy ; 16(12): 2294-2296, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33054575

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression which act by guiding AGO (argonaute) proteins to target RNA transcripts in the RNA-induced silencing complex (RISC). This macromolecular complex includes multiple additional components (e.g., TNRC6A) that allow for interaction with enzymes mediating inhibition of translation or RNA decay. However, miRNAs also reside in low-molecular weight complexes without being engaged in target repression, and their function in this context is largely unknown. Our recent findings show that endothelial cells exposed to protective high-shear stress or MTORC inhibition activate the macroautophagy/autophagy machinery to sustain viability by promoting differential trafficking of MIR126 strands and by enabling unconventional features of MIR126-5p. Whereas MIR126-3p is degraded upon autophagy activation, MIR126-5p interacts with the RNA-binding protein MEX3A to form a ternary complex with AGO2. This complex forms on the autophagosomal surface and facilitates its nuclear localization. Once in the nucleus, MIR126-5p dissociates from AGO2 and establishes aptamer-like interactions with the effector CASP3 (caspase 3). The binding to MIR126-5p prevents dimerization and proper active site formation of CASP3, thus inhibiting proteolytic activity and limiting apoptosis. Disrupting this pathway in vivo by genetic deletion of Mex3a or by specific deficiency of endothelial autophagy aggravates endothelial apoptosis and exacerbates the progression of atherosclerosis. The direct inhibition of CASP3 by MIR126-5p reveals a non-canonical mechanism by which miRNAs can modulate protein function and mediate the autophagy-apoptosis crosstalk.


Assuntos
Aterosclerose , MicroRNAs , Autofagia/genética , Caspase 3 , Células Endoteliais , Humanos , MicroRNAs/genética
5.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493793

RESUMO

MicroRNAs (miRNAs) are versatile regulators of gene expression with profound implications for human disease including atherosclerosis, but whether they can exert posttranslational functions to control cell adaptation and whether such noncanonical features harbor pathophysiological relevance is unknown. Here, we show that miR-126-5p sustains endothelial integrity in the context of high shear stress and autophagy. Bound to argonaute-2 (Ago2), miR-126-5p forms a complex with Mex3a, which occurs on the surface of autophagic vesicles and guides its transport into the nucleus. Mutational studies and biophysical measurements demonstrate that Mex3a binds to the central U- and G-rich regions of miR-126-5p with nanomolar affinity via its two K homology domains. In the nucleus, miR-126-5p dissociates from Ago2 and binds to caspase-3 in an aptamer-like fashion with its seed sequence, preventing dimerization of the caspase and inhibiting its activity to limit apoptosis. The antiapoptotic effect of miR-126-5p outside of the RNA-induced silencing complex is important for endothelial integrity under conditions of high shear stress promoting autophagy: ablation of Mex3a or ATG5 in vivo attenuates nuclear import of miR-126-5p, aggravates endothelial apoptosis, and exacerbates atherosclerosis. In human plaques, we found reduced nuclear miR-126-5p and active caspase-3 in areas of disturbed flow. The direct inhibition of caspase-3 by nuclear miR-126-5p reveals a noncanonical mechanism by which miRNAs can modulate protein function.


Assuntos
Aterosclerose , MicroRNAs , Apoptose , Aterosclerose/genética , Autofagia , Caspase 3 , Humanos , MicroRNAs/genética
8.
Thromb Haemost ; 119(11): 1795-1806, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31473989

RESUMO

Reticulated platelets (RPs) are larger, hyperreactive platelets that contain significantly more ribonucleic acid (RNA) compared with mature platelets (MPs). High levels of RPs in peripheral blood are predictors of an insufficient response to dual antiplatelet therapy in cardiovascular patients and of adverse cardiovascular events. However, the mechanisms underlying these correlations remain widely unknown and the biology of RPs has not been investigated yet. Here, we compared for the first time the transcriptomic profiles of RPs and MPs isolated from peripheral blood of healthy donors. Total RNA sequencing revealed 1,744 differentially expressed genes (670 downregulated, 1,074 upregulated) in RPs compared with MPs. In particular, transcripts for the collagen receptor GP6, thromboxane receptor A2 (TBXA2R), thrombin receptor PAR4 (F2RL3), and adenosine triphosphate receptors P2RX1, ORAI2, and STIM1 (both involved in calcium signaling) were significantly upregulated in RPs, whereas several RNA regulators as the ribonuclease PARN, the RISC-component TNRC6A, and the splicing factor LUC7L3 were downregulated in RPs. Gene ontology analysis revealed an enrichment of relevant biological categories in RPs including platelet activation and blood coagulation. Gene Set Enrichment Analysis showed an overrepresentation of several platelet activation pathways like thrombin, thromboxane, and glycoprotein IIb/IIIa signaling in RPs. Small-RNA sequencing reported 9 micro-RNAs significantly downregulated in RPs with targets involved in platelet reactivity. Our data show for the first time an enrichment of several prothrombotic transcripts in RPs providing a first biological explanation for their hyperreactive phenotype.


Assuntos
Plaquetas/química , Perfilação da Expressão Gênica , Ativação Plaquetária/genética , RNA Mensageiro/genética , Trombose/genética , Transcriptoma , Adulto , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/sangue , Adulto Jovem
9.
Sci Immunol ; 4(36)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227596

RESUMO

The role of nonclassical monocytes (NCMs) in health and disease is emerging, but their location and function within tissues remain poorly explored. Imaging of NCMs has been limited by the lack of an established single NCM marker. Here, we characterize the immune checkpoint molecule PD-L1 (CD274) as an unequivocal marker for tracking NCMs in circulation and pinpoint their compartmentalized distribution in tissues by two-photon microscopy. Visualization of PD-L1+ NCMs in relation to bone marrow vasculature reveals that conversion of classical monocytes into NCMs requires contact with endosteal vessels. Furthermore, PD-L1+ NCMs are present in tertiary lymphoid organs (TLOs) under inflammatory conditions in both mice and humans, and NCMs exhibit a PD-L1-dependent immunomodulatory function that promotes T cell apoptosis within TLOs. Our findings establish an unambiguous tool for the investigation of NCMs and shed light on their origin and function.


Assuntos
Antígeno B7-H1/imunologia , Monócitos/imunologia , Músculos Abdominais/imunologia , Animais , Anticorpos/farmacologia , Medula Óssea/imunologia , Feminino , Fêmur , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologia
10.
Thromb Haemost ; 119(4): 534-541, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716778

RESUMO

Inflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1-4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


Assuntos
Aterosclerose/metabolismo , Doenças Cardiovasculares/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/metabolismo , Quimiotaxia , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy/metabolismo , Humanos , Inflamação , Lipídeos/química , Receptores CCR/metabolismo , Receptores CXCR/metabolismo , Receptores de Superfície Celular/metabolismo , Resistência ao Cisalhamento , Transdução de Sinais , Estresse Mecânico
11.
J Am Coll Cardiol ; 71(5): 527-542, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406859

RESUMO

BACKGROUND: Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. OBJECTIVES: This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. METHODS: The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe-/-) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. RESULTS: TRAF-STOP treatment of young Apoe-/- mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe-/- mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair "classical" immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and ß2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe-/- mice. CONCLUSIONS: TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.


Assuntos
Aterosclerose/patologia , Aterosclerose/prevenção & controle , Ligante de CD40/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Compostos de Anilina/farmacologia , Animais , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Propiofenonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...