Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 21(6): 743-754, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160708

RESUMO

Chromatin assembled with the histone H3 variant CENP-A is the heritable epigenetic determinant of human centromere identity. Using genome-wide mapping and reference models for 23 human centromeres, CENP-A binding sites are identified within the megabase-long, repetitive α-satellite DNAs at each centromere. CENP-A is shown in early G1 to be assembled into nucleosomes within each centromere and onto 11,390 transcriptionally active sites on the chromosome arms. DNA replication is demonstrated to remove ectopically loaded, non-centromeric CENP-A. In contrast, tethering of centromeric CENP-A to the sites of DNA replication through the constitutive centromere associated network (CCAN) is shown to enable precise reloading of centromere-bound CENP-A onto the same DNA sequences as in its initial prereplication loading. Thus, DNA replication acts as an error correction mechanism for maintaining centromere identity through its removal of non-centromeric CENP-A coupled with CCAN-mediated retention and precise reloading of centromeric CENP-A.


Assuntos
Proteína Centromérica A/genética , Centrômero/genética , Cromossomos Humanos/genética , Replicação do DNA/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Fase G1/genética , Células HeLa , Histonas/genética , Humanos , Nucleossomos/genética
2.
Neuron ; 102(3): 602-620.e9, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30902550

RESUMO

The rich functional diversity of the nervous system is founded in the specific connectivity of the underlying neural circuitry. Neurons are often preprogrammed to respond to multiple axon guidance signals because they use sequential guideposts along their pathways, but this necessitates a strict spatiotemporal regulation of intracellular signaling to ensure the cues are detected in the correct order. We performed a mouse mutagenesis screen and identified the Rho GTPase antagonist p190RhoGAP as a critical regulator of motor axon guidance. Rather than acting as a compulsory signal relay, p190RhoGAP uses a non-conventional GAP-independent mode to transiently suppress attraction to Netrin-1 while motor axons exit the spinal cord. Once in the periphery, a subset of axons requires p190RhoGAP-mediated inhibition of Rho signaling to target specific muscles. Thus, the multifunctional activity of p190RhoGAP emerges from its modular design. Our findings reveal a cell-intrinsic gate that filters conflicting signals, establishing temporal windows of signal detection.


Assuntos
Orientação de Axônios/genética , Receptor DCC/metabolismo , Proteínas Ativadoras de GTPase/genética , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Netrina-1/metabolismo , Proteínas Repressoras/genética , Animais , Células do Corno Anterior/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas , Mutação
3.
Nat Commun ; 10(1): 175, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635586

RESUMO

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/fisiologia , Edição de Genes , Células HeLa , Humanos , Fosforilação
4.
J Biol Chem ; 294(8): 2665-2677, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593505

RESUMO

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a multifunctional protein that has been implicated in a myriad of cellular pathways. Although most well-known for its phosphodiesterase activity removing stalled topoisomerase 2 from DNA, TDP2 has also been shown to interact with both survival and apoptotic mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, it facilitates enterovirus replication and has been genetically linked to neurological disorders ranging from Parkinson's disease to dyslexia. To accurately evaluate TDP2 as a therapeutic target, we need to understand how TDP2 performs such a wide diversity of functions. Here, we use cancer cell lines modified with CRISPR/Cas9 or stably-expressed TDP2-targeted shRNA and transfection of various TDP2 mutants to show that its expression is regulated at the translational level via an internal ribosome entry site (IRES) that initiates translation at codon 54, the second in-frame methionine of the TDP2 coding sequence. We observed that this IRES drives expression of a shorter, N-terminally truncated isoform of TDP2, ΔN-TDP2, which omits a nuclear localization sequence. Additionally, we noted that ΔN-TDP2 retains phosphodiesterase activity and is protective against etoposide-induced cell death, but co-immunoprecipitates with fewer high-molecular-weight ubiquitinated peptide species, suggesting partial loss-of-function of TDP2's ubiquitin-association domain. In summary, our findings suggest the existence of an IRES in the 5' coding sequence of TDP2 that translationally regulates expression of an N-terminally truncated, cytoplasmic isoform of TDP2. These results shed light on the regulation of this multifunctional protein and may inform the design of therapies targeting TDP2 and associated pathways.


Assuntos
Processamento Alternativo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sítios Internos de Entrada Ribossomal/genética , Neoplasias/genética , Proteínas Nucleares/genética , Ribossomos/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Ligação a DNA , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Iniciação Traducional da Cadeia Peptídica , Diester Fosfórico Hidrolases , Isoformas de Proteínas , Ribossomos/genética , Homologia de Sequência , Células Tumorais Cultivadas , Ubiquitina/metabolismo
5.
Elife ; 72018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30192228

RESUMO

Transcription by RNA polymerase III (Pol III) is an essential cellular process, and mutations in Pol III can cause neurodegenerative disease in humans. However, in contrast to Pol II transcription, which has been extensively studied, the knowledge of how Pol III is regulated is very limited. We report here that in budding yeast, Saccharomyces cerevisiae, Pol III is negatively regulated by the Small Ubiquitin-like MOdifier (SUMO), an essential post-translational modification pathway. Besides sumoylation, Pol III is also targeted by ubiquitylation and the Cdc48/p97 segregase; these three processes likely act in a sequential manner and eventually lead to proteasomal degradation of Pol III subunits, thereby repressing Pol III transcription. This study not only uncovered a regulatory mechanism for Pol III, but also suggests that the SUMO and ubiquitin modification pathways and the Cdc48/p97 segregase can be potential therapeutic targets for Pol III-related human diseases.


Assuntos
RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Genes Supressores , Testes Genéticos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitinação
6.
Mol Cell ; 70(5): 842-853.e7, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861157

RESUMO

Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Instabilidade Genômica , Heterocromatina/genética , RNA Neoplásico/genética , RNA Satélite/genética , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , RNA Neoplásico/metabolismo , RNA Satélite/metabolismo , Carga Tumoral
7.
J Biol Chem ; 292(25): 10398-10413, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28461335

RESUMO

Homologous to E6AP C-terminal (HECT) ubiquitin (Ub) ligases (E3s) are a large class of enzymes that bind to their substrates and catalyze ubiquitination through the formation of a Ub thioester intermediate. The mechanisms by which these E3s assemble polyubiquitin chains on their substrates remain poorly defined. We report here that the Nedd4 family HECT E3, WWP1, assembles substrate-linked Ub chains containing Lys-63, Lys-48, and Lys-11 linkages (Lys-63 > Lys-48 > Lys-11). Our results demonstrate that WWP1 catalyzes the formation of Ub chains through a sequential addition mechanism, in which Ub monomers are transferred in a successive fashion to the substrate, and that ubiquitination by WWP1 requires the presence of a low-affinity, noncovalent Ub-binding site within the HECT domain. Unexpectedly, we find that the formation of Ub chains by WWP1 occurs in two distinct phases. In the first phase, chains are synthesized in a unidirectional manner and are linked exclusively through Lys-63 of Ub. In the second phase, chains are elongated in a multidirectional fashion characterized by the formation of mixed Ub linkages and branched structures. Our results provide new insight into the mechanism of Ub chain formation employed by Nedd4 family HECT E3s and suggest a framework for understanding how this family of E3s generates Ub signals that function in proteasome-independent and proteasome-dependent pathways.


Assuntos
Poliubiquitina/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Humanos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteólise , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
8.
J Biol Chem ; 292(2): 611-628, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27909058

RESUMO

Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glioblastoma/metabolismo , Prenilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinases raf/genética , Quinases raf/metabolismo
9.
Cell ; 163(3): 583-93, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496605

RESUMO

LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.


Assuntos
Pan troglodytes/genética , Retroelementos , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Citoplasma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/metabolismo , Alinhamento de Sequência
10.
Cell ; 162(1): 198-210, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140597

RESUMO

Histidine phosphorylation (pHis) is well studied in bacteria; however, its role in mammalian signaling remains largely unexplored due to the lack of pHis-specific antibodies and the lability of the phosphoramidate (P-N) bond. Both imidazole nitrogens can be phosphorylated, forming 1-phosphohistidine (1-pHis) or 3-phosphohistidine (3-pHis). We have developed monoclonal antibodies (mAbs) that specifically recognize 1-pHis or 3-pHis; they do not cross-react with phosphotyrosine or the other pHis isomer. Assays based on the isomer-specific autophosphorylation of NME1 and phosphoglycerate mutase were used with immunoblotting and sequencing IgG variable domains to screen, select, and characterize anti-1-pHis and anti-3-pHis mAbs. Their sequence independence was determined by blotting synthetic peptide arrays, and they have been tested for immunofluorescence staining and immunoaffinity purification, leading to putative identification of pHis-containing proteins. These reagents should be broadly useful for identification of pHis substrates and functional study of pHis using a variety of immunological, proteomic, and biological assays.


Assuntos
Anticorpos Monoclonais , Histidina/metabolismo , Animais , Centrossomo , Cromatografia Líquida , Células HeLa , Humanos , Modelos Químicos , Peptídeos/análise , Fosforilação , Polos do Fuso , Espectrometria de Massas em Tandem
11.
J Proteomics ; 129: 25-32, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26196237

RESUMO

Shotgun proteomics generates valuable information from large-scale and target protein characterizations, including protein expression, protein quantification, protein post-translational modifications (PTMs), protein localization, and protein-protein interactions. Typically, peptides derived from proteolytic digestion, rather than intact proteins, are analyzed by mass spectrometers because peptides are more readily separated, ionized and fragmented. The amino acid sequences of peptides can be interpreted by matching the observed tandem mass spectra to theoretical spectra derived from a protein sequence database. Identified peptides serve as surrogates for their proteins and are often used to establish what proteins were present in the original mixture and to quantify protein abundance. Two major issues exist for assigning peptides to their originating protein. The first issue is maintaining a desired false discovery rate (FDR) when comparing or combining multiple large datasets generated by shotgun analysis and the second issue is properly assigning peptides to proteins when homologous proteins are present in the database. Herein we demonstrate a new computational tool, ProteinInferencer, which can be used for protein inference with both small- or large-scale data sets to produce a well-controlled protein FDR. In addition, ProteinInferencer introduces confidence scoring for individual proteins, which makes protein identifications evaluable. This article is part of a Special Issue entitled: Computational Proteomics.


Assuntos
Algoritmos , Mapeamento de Peptídeos/métodos , Proteoma/química , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Espectrometria de Massas/métodos , Dados de Sequência Molecular
12.
J Proteome Res ; 13(12): 6078-86, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25382489

RESUMO

Intact protein analysis via top-down mass spectrometry (MS) provides a bird's eye view over the protein complexes and complex protein mixtures with the unique capability of characterizing protein variants, splice isoforms, and combinatorial post-translational modifications (PTMs). Here we applied capillary electrophoresis (CE) through a sheathless CE-electrospray ionization interface coupled to an LTQ Velos Orbitrap Elite mass spectrometer to analyze the Dam1 complex from Saccharomyces cerevisiae. We achieved a 100-fold increase in sensitivity compared to a reversed-phase liquid chromatography coupled MS analysis of recombinant Dam1 complex with a total loading of 2.5 ng (12 amol). N-terminal processing forms of individual subunits of the Dam1 complex were observed as well as their phosphorylation stoichiometry upon Mps1p kinase treatment.


Assuntos
Proteínas de Ciclo Celular/análise , Eletroforese Capilar/métodos , Proteínas Associadas aos Microtúbulos/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Peso Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
PLoS Genet ; 10(10): e1004588, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299455

RESUMO

In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Epigênese Genética , Histonas/metabolismo , Espermatozoides/fisiologia , Acetilação , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metilação , Dados de Sequência Molecular , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Espermatozoides/metabolismo , Ubiquitinação
14.
Anal Chem ; 86(22): 11006-12, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346219

RESUMO

Intact protein analysis via top-down mass spectrometry (MS) provides the unique capability of fully characterizing protein isoforms and combinatorial post-translational modifications (PTMs) compared to the bottom-up MS approach. Front-end protein separation poses a challenge for analyzing complex mixtures of intact proteins on a proteomic scale. Here we applied capillary electrophoresis (CE) through a sheathless capillary electrophoresis-electrospray ionization (CESI) interface coupled to an Orbitrap Elite mass spectrometer to profile the proteome from Pyrococcus furiosus. CESI-top-down MS analysis of Pyrococcus furiosus cell lysate identified 134 proteins and 291 proteoforms with a total sample consumption of 270 ng in 120 min of total analysis time. Truncations and various PTMs were detected, including acetylation, disulfide bonds, oxidation, glycosylation, and hypusine. This is the largest scale analysis of intact proteins by CE-top-down MS to date.


Assuntos
Proteínas Arqueais/análise , Proteoma/análise , Proteômica , Pyrococcus furiosus/química , Espectrometria de Massas em Tandem , Eletroforese Capilar
15.
J Biol Chem ; 289(35): 24716-23, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25049228

RESUMO

Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.


Assuntos
Dano ao DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Humanos , Estresse Oxidativo , Fosforilação , Ligação Proteica
16.
Mol Cell Proteomics ; 13(7): 1659-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24797264

RESUMO

Post-translational modification by SUMO is a highly conserved pathway in eukaryotes that plays very important regulatory roles in many cellular processes. Deregulation of the SUMO pathway contributes to the development and progression of many diseases including cancer. Therefore, identifying additional SUMO substrates and studying how their cellular and biological functions are regulated by sumoylation should provide new insights. Our studies showed that sumoylation activity was significant in Xenopus egg extracts, and that a high level of sumoylation was associated with sperm chromatin when SUMO was incubated with Xenopus egg extracts. By isolating SUMO-conjugated substrates using His-tagged SUMO1 or SUMO2 proteins under denaturing conditions, we identified 346 proteins by mass spectrometry analysis that were not present in control pull-downs. Among them, 167 proteins were identified from interphase egg extracts, 86 proteins from mitotic phase egg extracts, and 93 proteins from both. Thirty-three proteins were pulled down by SUMO1, 85 proteins by SUMO2, and 228 proteins by both. We validated the sumoylation of five candidates, CKB, ATXN10, BTF3, HABP4, and BZW1, by co-transfecting them along with SUMO in HEK293T cells. Gene ontology analysis showed that SUMO substrates identified in this study were involved in diverse biological processes. Additionally, SUMO substrates identified from different cell cycle stages or pulled down by different SUMO homologs were enriched for distinct cellular components and functional categories. Our results comprehensively profile the sumoylation occurring in the Xenopus egg extract system.


Assuntos
Cromatina/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Espermatozoides/metabolismo , Sumoilação/fisiologia , Sequência de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quimiocinas CC/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Fatores de Regulação Miogênica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Óvulo/metabolismo , Fatores de Transcrição/metabolismo , Xenopus
17.
Cell Rep ; 7(3): 722-34, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24794442

RESUMO

Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behavior. Somatic hub cells in the Drosophila testis regulate the behavior of cyst stem cells (CySCs) and germline stem cells (GSCs) and are a primary component of the testis stem cell niche. The shutoff (shof) mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg). Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the corepressor C-terminal binding protein (CtBP), which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Nicho de Células-Tronco , Células-Tronco/citologia , Testículo/citologia , Alelos , Animais , Linhagem da Célula , Proteínas de Drosophila/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
18.
Bioinformatics ; 30(15): 2208-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681903

RESUMO

MOTIVATION: We introduce Census 2, an update of a mass spectrometry data analysis tool for peptide/protein quantification. New features for analysis of isobaric labeling, such as Tandem Mass Tag (TMT) or Isobaric Tags for Relative and Absolute Quantification (iTRAQ), have been added in this version, including a reporter ion impurity correction, a reporter ion intensity threshold filter and an option for weighted normalization to correct mixing errors. TMT/iTRAQ analysis can be performed on experiments using HCD (High Energy Collision Dissociation) only, CID (Collision Induced Dissociation)/HCD (High Energy Collision Dissociation) dual scans or HCD triple-stage mass spectrometry data. To improve measurement accuracy, we implemented weighted normalization, multiple tandem spectral approach, impurity correction and dynamic intensity threshold features. AVAILABILITY AND IMPLEMENTATION: Census 2 supports multiple input file formats including MS1/MS2, DTASelect, mzXML and pepXML. It requires JAVA version 6 or later to run. Free download of Census 2 for academic users is available at http://fields.scripps.edu/census/index.php. CONTACT: jyates@scripps.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Estatística como Assunto/métodos , Animais , Linhagem Celular , Marcação por Isótopo , Camundongos , Peptídeos/análise , Peptídeos/química , Proteínas/análise , Proteínas/química
19.
Chem Biol ; 21(3): 331-7, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24529990

RESUMO

Arginylation is an emerging posttranslational modification mediated by Arg-tRNA-protein-transferase (ATE1). It is believed that ATE1 links Arg solely to the N terminus of proteins, requiring prior proteolysis or action by Met-aminopeptidases to expose the arginylated site. Here, we tested the possibility of Arg linkage to midchain sites within intact protein targets and found that many proteins in vivo are modified on the side chains of Asp and Glu by unconventional chemistry that targets the carboxy rather than the amino groups at the target sites. Such arginylation appears to be functionally regulated, and it can be directly mediated by ATE1, in addition to the more conventional ATE1-mediated linkage of Arg to the N-terminal alpha amino group. This midchain arginylation implies an unconventional mechanism of ATE1 action that likely facilitates its major biological role.


Assuntos
Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Angiotensina II/análise , Angiotensina II/química , Angiotensina II/metabolismo , Animais , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálise , Cromatografia Líquida de Alta Pressão , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
20.
DNA Repair (Amst) ; 15: 29-38, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24461736

RESUMO

Faithful transmission of genetic material is essential for cell viability and organism health. The occurrence of DNA damage, due to either spontaneous events or environmental agents, threatens the integrity of the genome. The consequences of these insults, if allowed to perpetuate and accumulate over time, are mutations that can lead to the development of diseases such as cancer. Alkylation is a relevant DNA lesion produced endogenously as well as by exogenous agents including certain chemotherapeutics. We sought to better understand the cellular response to this form of DNA damage using mass spectrometry-based proteomics. For this purpose, we performed sub-cellular fractionation to monitor the effect of methyl methanesulfonate (MMS) treatment on protein localization to chromatin. The levels of over 500 proteins were increased in the chromatin-enriched nuclear lysate including histone chaperones. Levels of ubiquitin and subunits of the proteasome were also increased within this fraction, suggesting that ubiquitin-mediated degradation by the proteasome has an important role in the chromatin response to MMS treatment. Finally, the levels of some proteins were decreased within the chromatin-enriched lysate including components of the nuclear pore complex. Our spatial proteomics data demonstrate that many proteins that influence chromatin organization are regulated in response to MMS treatment, presumably to open the DNA to allow access by other DNA damage response proteins. To gain further insight into the cellular response to MMS-induced DNA damage, we also performed phosphorylation enrichment on total cell lysates to identify proteins regulated via post-translational modification. Phosphoproteomic analysis demonstrated that many nuclear phosphorylation events were decreased in response to MMS treatment. This reflected changes in protein kinase and/or phosphatase activity in response to DNA damage rather than changes in total protein abundance. Using these two mass spectrometry-based approaches, we have identified a novel set of MMS-responsive proteins that will expand our understanding of DNA damage signaling.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Reparo do DNA , Metanossulfonato de Metila/toxicidade , Proteoma/metabolismo , Cromatina/metabolismo , Dano ao DNA , Células HeLa , Humanos , Espectrometria de Massas , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...