Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(5): 835-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372694

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is sustained by spontaneous focal excitations and re-entry. Spontaneous electrical firing in the pulmonary vein (PV) sleeves is implicated in AF generation. The aim of this simulation study was to identify the mechanisms determining the localisation of AF triggers in the PVs and their contribution to the genesis of AF. A novel biophysical model of the canine atria was used that integrates stochastic, spontaneous subcellular Ca2+ release events (SCRE) with regional electrophysiological heterogeneity in ionic properties and a detailed three-dimensional model of atrial anatomy, microarchitecture and patchy fibrosis. Simulations highlighted the importance of the smaller inward rectifier potassium current (IK1 ) in PV cells compared to the surrounding atria, which enabled SCRE more readily to result in delayed-afterdepolarisations that induced triggered activity. There was a leftward shift in the dependence of the probability of triggered activity on sarcoplasmic reticulum Ca2+ load. This feature was accentuated in 3D tissue compared to single cells (Δ half-maximal [Ca2+ ]SR  = 58 µM vs. 22 µM). In 3D atria incorporating electrical heterogeneity, excitations preferentially emerged from the PV region. These triggered focal excitations resulted in transient re-entry in the left atrium. Addition of fibrotic patches promoted localised emergence of focal excitations and wavebreaks that had a more substantial impact on generating AF-like patterns than the PVs. Thus, a reduced IK1 , less negative resting membrane potential, and fibrosis-induced changes of the electrotonic load all contribute to the emergence of complex excitation patterns from spontaneous focal triggers. KEY POINTS: Focal excitations in the atria are most commonly associated with the pulmonary veins, but the mechanisms for this localisation are yet to be elucidated. We applied a multi-scale computational modelling approach to elucidate the mechanisms underlying such localisations. Myocytes in the pulmonary vein region of the atria have a less negative resting membrane potential and reduced time-independent potassium current; we demonstrate that both of these factors promote triggered activity in single cells and tissues. The less negative resting membrane potential also contributes to heterogeneous inactivation of the fast sodium current, which can enable re-entrant-like excitation patterns to emerge without traditional conduction block.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Animais , Cães , Fibrilação Atrial/etiologia , Cálcio , Átrios do Coração , Cálcio da Dieta , Potenciais de Ação , Fibrose , Potássio
2.
Interface Focus ; 13(6): 20230041, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106913

RESUMO

Fibrosis has been mechanistically linked to arrhythmogenesis in multiple cardiovascular conditions, including atrial fibrillation (AF). Previous studies have demonstrated that fibrosis can create functional barriers to conduction which may promote excitation wavebreak and the generation of re-entry, while also acting to pin re-entrant excitation in stable rotors during AF. However, few studies have investigated the role of fibrosis in the generation of AF triggers in detail. We apply our in-house computational framework to study the impact of fibrosis on the generation of AF triggers and trigger-substrate interactions in two- and three-dimensional atrial tissue models. Our models include a reduced and efficient description of stochastic, spontaneous cellular triggers as well as a simple model of heterogeneous inter-cellular coupling. Our results demonstrate that fibrosis promotes the emergence of focal excitations, primarily through reducing the electrotonic load on individual fibre strands. This enables excitation to robustly initiate within these single strands before spreading to neighbouring strands and inducing a full tissue focal excitation. Enhanced conduction block can allow trigger-substrate interactions that result in the emergence of complex, re-entrant excitation patterns. This study provides new insight into the mechanisms by which fibrosis promotes the triggers and substrate necessary to induce and sustain arrhythmia.

3.
IEEE Trans Med Imaging ; 36(8): 1607-1614, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28422654

RESUMO

Knowledge of atrial wall thickness (AWT) has the potential to provide important information for patient stratification and the planning of interventions in atrial arrhythmias. To date, information about AWT has only been acquired in post-mortem or poor-contrast computed tomography (CT) studies, providing limited coverage and highly variable estimates of AWT. We present a novel contrast agent-free MRI sequence for imaging AWT and use it to create personalized AWT maps and a biatrial atlas. A novel black-blood phase-sensitive inversion recovery protocol was used to image ten volunteers and, as proof of concept, two atrial fibrillation patients. Both atria were manually segmented to create subject-specific AWT maps using an average of nearest neighbors approach. These were then registered non-linearly to generate an AWT atlas. AWT was 2.4 ± 0.7 and 2.7 ± 0.7 mm in the left and right atria, respectively, in good agreement with post-mortem and CT data, where available. AWT was 2.6 ± 0.7 mm in the left atrium of a patient without structural heart disease, similar to that of volunteers. In a patient with structural heart disease, the AWT was increased to 3.1 ± 1.3 mm. We successfully designed an MRI protocol to non-invasively measure AWT and create the first whole-atria AWT atlas. The atlas can be used as a reference to study alterations in thickness caused by atrial pathology. The protocol can be used to acquire personalized AWT maps in a clinical setting and assist in the treatment of atrial arrhythmias.


Assuntos
Átrios do Coração , Fibrilação Atrial , Sistema de Condução Cardíaco , Humanos , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
4.
Front Physiol ; 8: 68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261103

RESUMO

The left atrium (LA) can change in size and shape due to atrial fibrillation (AF)-induced remodeling. These alterations can be linked to poorer outcomes of AF ablation. In this study, we propose a novel comprehensive computational analysis of LA anatomy to identify what features of LA shape can optimally predict post-ablation AF recurrence. To this end, we construct smooth 3D geometrical models from the segmentation of the LA blood pool captured in pre-procedural MR images. We first apply this methodology to characterize the LA anatomy of 144 AF patients and build a statistical shape model that includes the most salient variations in shape across this cohort. We then perform a discriminant analysis to optimally distinguish between recurrent and non-recurrent patients. From this analysis, we propose a new shape metric called vertical asymmetry, which measures the imbalance of size along the anterior to posterior direction between the superior and inferior left atrial hemispheres. Vertical asymmetry was found, in combination with LA sphericity, to be the best predictor of post-ablation recurrence at both 12 and 24 months (area under the ROC curve: 0.71 and 0.68, respectively) outperforming other shape markers and any of their combinations. We also found that model-derived shape metrics, such as the anterior-posterior radius, were better predictors than equivalent metrics taken directly from MRI or echocardiography, suggesting that the proposed approach leads to a reduction of the impact of data artifacts and noise. This novel methodology contributes to an improved characterization of LA organ remodeling and the reported findings have the potential to improve patient selection and risk stratification for catheter ablations in AF.

5.
PLoS Comput Biol ; 12(12): e1005245, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27984585

RESUMO

Anti-arrhythmic drug therapy is a frontline treatment for atrial fibrillation (AF), but its success rates are highly variable. This is due to incomplete understanding of the mechanisms of action of specific drugs on the atrial substrate at different stages of AF progression. We aimed to elucidate the role of cellular, tissue and organ level atrial heterogeneities in the generation of a re-entrant substrate during AF progression, and their modulation by the acute action of selected anti-arrhythmic drugs. To explore the complex cell-to-organ mechanisms, a detailed biophysical models of the entire 3D canine atria was developed. The model incorporated atrial geometry and fibre orientation from high-resolution micro-computed tomography, region-specific atrial cell electrophysiology and the effects of progressive AF-induced remodelling. The actions of multi-channel class III anti-arrhythmic agents vernakalant and amiodarone were introduced in the model by inhibiting appropriate ionic channel currents according to experimentally reported concentration-response relationships. AF was initiated by applied ectopic pacing in the pulmonary veins, which led to the generation of localized sustained re-entrant waves (rotors), followed by progressive wave breakdown and rotor multiplication in both atria. The simulated AF scenarios were in agreement with observations in canine models and patients. The 3D atrial simulations revealed that a re-entrant substrate was typically provided by tissue regions of high heterogeneity of action potential duration (APD). Amiodarone increased atrial APD and reduced APD heterogeneity and was more effective in terminating AF than vernakalant, which increased both APD and APD dispersion. In summary, the initiation and sustenance of rotors in AF is linked to atrial APD heterogeneity and APD reduction due to progressive remodelling. Our results suggest that anti-arrhythmic strategies that increase atrial APD without increasing its dispersion are effective in terminating AF.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Átrios do Coração/citologia , Átrios do Coração/efeitos dos fármacos , Modelos Cardiovasculares , Animais , Fenômenos Biomecânicos , Cães , Reprodutibilidade dos Testes , Análise de Célula Única
6.
Front Physiol ; 7: 474, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826248

RESUMO

Introduction: The genesis of atrial fibrillation (AF) and success of AF ablation therapy have been strongly linked with atrial fibrosis. Increasing evidence suggests that patient-specific distributions of fibrosis may determine the locations of electrical drivers (rotors) sustaining AF, but the underlying mechanisms are incompletely understood. This study aims to elucidate a missing mechanistic link between patient-specific fibrosis distributions and AF drivers. Methods: 3D atrial models integrated human atrial geometry, rule-based fiber orientation, region-specific electrophysiology, and AF-induced ionic remodeling. A novel detailed model for an atrial fibroblast was developed, and effects of myocyte-fibroblast (M-F) coupling were explored at single-cell, 1D tissue and 3D atria levels. Left atrial LGE MRI datasets from 3 chronic AF patients were segmented to provide the patient-specific distributions of fibrosis. The data was non-linearly registered and mapped to the 3D atria model. Six distinctive fibrosis levels (0-healthy tissue, 5-dense fibrosis) were identified based on LGE MRI intensity and modeled as progressively increasing M-F coupling and decreasing atrial tissue coupling. Uniform 3D atrial model with diffuse (level 2) fibrosis was considered for comparison. Results: In single cells and tissue, the largest effect of atrial M-F coupling was on the myocyte resting membrane potential, leading to partial inactivation of sodium current and reduction of conduction velocity (CV). In the 3D atria, further to the M-F coupling, effects of fibrosis on tissue coupling greatly reduce atrial CV. AF was initiated by fast pacing in each 3D model with either uniform or patient-specific fibrosis. High variation in fibrosis distributions between the models resulted in varying complexity of AF, with several drivers emerging. In the diffuse fibrosis models, waves randomly meandered through the atria, whereas in each the patient-specific models, rotors stabilized in fibrotic regions. The rotors propagated slowly around the border zones of patchy fibrosis (levels 3-4), failing to spread into inner areas of dense fibrosis. Conclusion: Rotors stabilize in the border zones of patchy fibrosis in 3D atria, where slow conduction enable the development of circuits within relatively small regions. Our results can provide a mechanistic explanation for the clinical efficacy of ablation around fibrotic regions.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 489-492, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28261003

RESUMO

Radiofrequency catheter ablation procedures are a first-line method of clinical treatment for atrial fibrillation. However, they suffer from suboptimal success rates and are also prone to potentially serious adverse effects. These limitations can be at least partially attributed to the inter- and intra- patient variations in atrial wall thickness, and could be mitigated by patient-specific approaches to the procedure. In this study, a modelling approach to optimising ablation procedures in subject-specific 3D atrial geometries was applied. The approach enabled the evaluation of optimal ablation times to create lesions for a given wall thickness measured from MRI. A nonliner relationship was revealed between the thickness and catheter contact time required for fully transmural lesions. Hence, our approach based on MRI reconstruction of the atrial wall combined with subject-specific modelling of ablation can provide useful information for improving clinical procedures.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Modelagem Computacional Específica para o Paciente , Fibrilação Atrial/diagnóstico por imagem , Ablação por Cateter/efeitos adversos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Resultado do Tratamento
9.
Europace ; 16(3): 416-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569896

RESUMO

AIMS: Atrial fibrillation (AF), the commonest cardiac arrhythmia, has been strongly linked with arrhythmogenic sources near the pulmonary veins (PVs), but underlying mechanisms are not fully understood. We aim to study the generation and sustenance of wave sources in a model of the PV tissue. METHODS AND RESULTS: A previously developed biophysically detailed three-dimensional canine atrial model is applied. Effects of AF-induced electrical remodelling are introduced based on published experimental data, as changes of ion channel currents (ICaL, IK1, Ito, and IKur), the action potential (AP) and cell-to-cell coupling levels. Pharmacological effects are introduced by blocking specific ion channel currents. A combination of electrical heterogeneity (AP tissue gradients of 5-12 ms) and anisotropy (conduction velocities of 0.75-1.25 and 0.21-0.31 m/s along and transverse to atrial fibres) can results in the generation of wave breaks in the PV region. However, a long wavelength (171 mm) prevents the wave breaks from developing into re-entry. Electrical remodelling leads to decreases in the AP duration, conduction velocity and wavelength (to 49 mm), such that re-entry becomes sustained. Pharmacological effects on the tissue heterogeneity and vulnerability (to wave breaks and re-entry) are quantified to show that drugs that increase the wavelength and stop re-entry (IK1 and IKur blockers) can also increase the heterogeneity (AP gradients of 26-27 ms) and the likelihood of wave breaks. CONCLUSION: Biophysical modelling reveals large conduction block areas near the PVs, which are due to discontinuous fibre arrangement enhanced by electrical heterogeneity. Vulnerability to re-entry in such areas can be modulated by pharmacological interventions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/administração & dosagem , Relógios Biológicos/efeitos dos fármacos , Modelos Animais de Doenças , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Veias Pulmonares/fisiopatologia , Animais , Simulação por Computador , Cães , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Veias Pulmonares/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-25570275

RESUMO

Complex fractionated atrial electrograms (CFAEs) are often used as a clinical marker for re-entrant drivers of atrial fibrillation. However, outcomes of clinical ablation procedures based on CFAEs are controversial and the mechanistic links between fractionation, re-entrant activity and the characteristics of the atrial substrate are not completely understood. We explore such links by simulating electrograms arising from both normal and re-entrant electrical activity in atrial tissue models. 2D and 3D tissue geometries with a range of conditions for intracellular coupling and myofiber orientation fields were studied. Electrograms were fractionated in the presence of complex atrial fiber fields and in 3D irregular geometries, due to far-field excitations. The complexity of the local electrical activity was not a strong determinant of the degree of fractionation. These results suggest that electrogram fractionation is more strongly linked to atrial substrate characteristics (including tissue geometry, fiber orientation and degree of intercelullar coupling) than to the electrical activation pattern sustaining atrial fibrillation.


Assuntos
Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/fisiopatologia , Simulação por Computador , Humanos , Processamento de Sinais Assistido por Computador
11.
J Physiol ; 591(17): 4249-72, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23732649

RESUMO

Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Átrios do Coração/metabolismo , Modelos Cardiovasculares , Átrios do Coração/citologia , Humanos , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia
12.
Interface Focus ; 3(2): 20120067, 2013 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24427521

RESUMO

Sheep are often used as animal models for experimental studies into the underlying mechanisms of cardiac arrhythmias. Previous studies have shown that biophysically detailed computer models of the heart provide a powerful alternative to experimental animal models for underpinning such mechanisms. In this study, we have developed a family of mathematical models for the electrical action potentials of various sheep atrial cell types. The developed cell models were then incorporated into a three-dimensional anatomical model of the sheep atria, which was recently reconstructed and segmented based on anatomical features within different regions. This created a novel biophysically detailed computational model of the three-dimensional sheep atria. Using the model, we then investigated the mechanisms by which paroxysmal rapid focal activity in the pulmonary veins can transit to sustained atrial fibrillation. It was found that the anisotropic property of the atria arising from the fibre structure plays an important role in facilitating the development of fibrillatory atrial excitation waves, and the electrical heterogeneity plays an important role in its initiation.

13.
Interface Focus ; 3(2): 20120069, 2013 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24427522

RESUMO

Mechanisms underlying the genesis of re-entrant substrate for the most common cardiac arrhythmia, atrial fibrillation (AF), are not well understood. In this study, we develop a multi-scale three-dimensional computational model that integrates cellular electrophysiology of the left atrium (LA) and pulmonary veins (PVs) with the respective tissue geometry and fibre orientation. The latter is reconstructed in unique detail from high-resolution (approx. 70 µm) contrast micro-computed tomography data. The model is used to explore the mechanisms of re-entry initiation and sustenance in the PV region, regarded as the primary source of high-frequency electrical activity in AF. Simulations of the three-dimensional model demonstrate that an initial break-down of normal electrical excitation wave-fronts can be caused by the electrical heterogeneity between the PVs and LA. High tissue anisotropy is then responsible for the slow conduction and generation of a re-entrant circuit near the PVs. Evidence of such circuits has been seen clinically in AF patients. Our computational study suggests that primarily the combination of electrical heterogeneity and conduction anisotropy between the PVs and LA tissues leads to the generation of a high-frequency (approx. 10 Hz) re-entrant source near the PV sleeves, thus providing new insights into the arrhythmogenic mechanisms of excitation waves underlying AF.

14.
IEEE Trans Med Imaging ; 32(1): 8-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22829390

RESUMO

Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3-D tissue images from small animals nondestructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high-resolution X-ray micro-CT images of the canine atria and its distinctive regions-including the Bachmann's bundle, atrioventricular node, pulmonary arteries and veins-with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3-D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibers can also be characterized using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibers rather than in connective tissues. This novel technique can be particularly useful in nondestructive imaging of 3-D cardiac architectures from large animals and humans, due to the combination of relatively high speed ( ~ 1 h/per scan of the large canine heart) and high voxel resolution (36 µm) provided. In summary, contrast micro-CT facilitates fast and nondestructive imaging and segmenting of detailed 3-D cardiovascular geometries, as well as measuring fiber orientation, which are crucial in constructing biophysically detailed computational cardiac models.


Assuntos
Coração/anatomia & histologia , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Compostos de Iodo/química , Modelos Cardiovasculares , Microtomografia por Raio-X/métodos , Animais , Meios de Contraste/química , Vasos Coronários/anatomia & histologia , Vasos Coronários/diagnóstico por imagem , Cães , Feminino
15.
J Mol Cell Cardiol ; 53(2): 145-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22537893

RESUMO

Transmural gradients in myocyte action potential duration (APD) and Ca(2+)-handling proteins are argued to be important for both the normal functioning of the ventricle and arrhythmogenesis. In rabbit, the transmural gradient in APD (left ventricular wedge preparation) is minimal in the neonate. During postnatal development, APD increases both in the epicardium and the endocardium, but the prolongation is more substantial in the endocardium leading to a significant transmural gradient. We have investigated changes in the expression of ion channels and also Ca(2+)-handling proteins in the subepicardial and subendocardial layers of the left ventricular free wall in neonatal (2-7 days of age) and adult male (~6 months of age) New Zealand White rabbits using quantitative PCR and also, when possible, in situ hybridisation and immunohistochemistry. In the adult, there were significant and substantial transmural gradients in Ca(v)1.2, KChIP2, ERG, K(v)LQT1, K(ir)2.1, NCX1, SERCA2a and RyR2 at the mRNA and, in some cases, protein level-in every case the mRNA or protein was more abundant in the epicardium than the endocardium. Of the eight transmural gradients seen in the adult, only three were observed in the neonate and, in two of these cases, the gradients were smaller than those in the adult. However, in the neonate there were also transmural gradients not observed in the adult: in HCN4, Na(v)1.5, minK, K(ir)3.1 and Cx40 mRNAs - in every case the mRNA was more abundant in the endocardium than the epicardium. If the postnatal changes in ion channel mRNAs are used to predict changes in ionic conductances, mathematical modelling predicts the changes in APD observed experimentally. It is concluded that many of the well known transmural gradients in the ventricle develop postnatally.


Assuntos
Ventrículos do Coração/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Endocárdio/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5 , Pericárdio/metabolismo , Reação em Cadeia da Polimerase , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
16.
Eur J Pharm Sci ; 46(4): 209-21, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-21888968

RESUMO

Computational models of human atrial cells, tissues and atria have been developed. Cell models, for atrial wall, crista terminalis, appendage, Bachmann's bundle and pectinate myocytes are characterised by action potentials, ionic currents and action potential duration (APD) restitution. The principal effect of the ion channel remodelling of persistent atrial fibrillation (AF), and a mutation producing familial AF, was APD shortening at all rates. Electrical alternans was abolished by the modelled action of Dronedarone. AF induced gap junctional remodelling slows propagation velocity at all rates. Re-entrant spiral waves in 2-D models are characterised by their frequency, wavelength, meander and stability. For homogenous models of normal tissue, spiral waves self-terminate, due to meander to inexcitable boundaries, and by dissipation of excitation. AF electrical remodelling in these homogenous models led to persistence of spiral waves, and AF fibrotic remodelling to their breakdown into fibrillatory activity. An anatomical model of the atria was partially validated by the activation times of normal sinus rhythm. The use of tissue geometry from clinical MRI, and tissue anisotropy from ex vivo diffusion tensor magnetic resonance imaging is outlined. In the homogenous model of normal atria, a single scroll breaks down onto spatio-temporal irregularity (electrical fibrillation) that is self-terminating; while in the AF remodelled atria the fibrillatory activity is persistent. The persistence of electrical AF can be dissected in the model in terms of ion channel and intercellular coupling processes, that can be modified pharmacologically; the effects of anatomy, that can be modified by ablation; and the permanent effects of fibrosis, that need to be prevented.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Função Atrial/efeitos dos fármacos , Simulação por Computador , Modelos Cardiovasculares , Biologia de Sistemas , Potenciais de Ação , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Imagem de Tensor de Difusão , Fibrose , Predisposição Genética para Doença , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Mutação , Fenótipo , Fatores de Tempo , Interface Usuário-Computador
17.
Artigo em Inglês | MEDLINE | ID: mdl-23365867

RESUMO

Mechanisms underlying the genesis of re-entrant substrate for atrial fibrillation (AF) in the pulmonary veins (PVs) and left atrium (LA) are not well understood. We develop a biophysically detailed computational model for the PVs and surrounding LA tissue. The model integrates canine PV and LA single cell electrophysiology with the respective 3D tissue geometry and fiber orientation reconstructed from micro-CT data. The model simulations demonstrate that a combination of tissue anisotropy and electrical heterogeneity between the PVs and LA causes a break-down of normal electrical excitation wave-fronts. This leads to the generation of a high-frequency re-entrant source near the PV sleeves. Evidence of such sources have been seen clinically in AF patients. In summary, our modeling results provide new insights into the arrhythmogenic mechanisms of re-entrant excitation waves underlying AF.


Assuntos
Fibrilação Atrial/fisiopatologia , Simulação por Computador , Modelos Cardiovasculares , Veias Pulmonares/fisiopatologia , Animais , Fibrilação Atrial/patologia , Cães , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Veias Pulmonares/patologia
18.
Prog Biophys Mol Biol ; 107(1): 156-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21762716

RESUMO

Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Simulação por Computador , Modelos Anatômicos , Interface Usuário-Computador , Anisotropia , Eletrocardiografia , Feminino , Átrios do Coração/anatomia & histologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Nó Sinoatrial/patologia , Nó Sinoatrial/fisiopatologia , Tronco/anatomia & histologia
19.
IEEE Trans Biomed Eng ; 58(10): 2952-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742568

RESUMO

Atrial arrhythmias resulting from abnormally rapid focal activity in the atria may be reflected in an altered P-wave morphology (PWM) in the ECG. Although clinically important, detailed relationships between PWM and origins of atrial focal excitations have not been established. To study such relationships, we developed computational models of the human atria and torso. The model simulation results were used to evaluate an extant clinical algorithm for locating the origin of atrial focal points from the ECG. The simulations showed that the algorithm was practical and could predict the atrial focal locations with 85% accuracy. We proposed a further refinement of the algorithm to distinguish between focal locations within the large atrial bundles.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Átrios do Coração/anatomia & histologia , Modelos Cardiovasculares , Taquicardia Atrial Ectópica/fisiopatologia , Tronco/anatomia & histologia , Algoritmos , Função Atrial/fisiologia , Simulação por Computador , Feminino , Átrios do Coração/fisiopatologia , Humanos , Processamento de Sinais Assistido por Computador , Tronco/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-22254651

RESUMO

Heterogeneity in the electrical action potential (AP) properties can provide a substrate for atrial arrhythmias, especially at rapid pacing rates. In order to quantify such substrates, we develop a family of detailed AP models for canine atrial cells. An existing model for the canine right atrial (RA) myocyte was modified based on electrophysiological data from dog to create new models for the canine left atrium (LA), the interatrial Bachmann's bundle (BB), and the pulmonary vein (PV). The heterogeneous AP models were incorporated into a tissue strand model to simulate the AP propagation, and used to quantify conditions for conduction abnormalities (primarily, conduction block at rapid pacing rated) in the canine atria.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Veias Pulmonares/fisiopatologia , Animais , Simulação por Computador , Cães
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...