Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083733

RESUMO

Research advancement has spurred the usage of electroencephalography (EEG)-based neural oscillatory rhythms as a biomarker to complement clinical rehabilitation strategies for the recovery of motor functions in stroke survivors. However, the inevitable contamination of EEG signals with artifacts from various sources limits its utilization and effectiveness. Thus, the integration of Independent Component Analysis (ICA) and Independent Component Label (ICLabel) has been widely employed to separate neural activity from artifacts. A crucial step in the ICLabel preprocessing pipeline is the artifactual ICs rejection threshold (TH) parameter, which determines the overall signal's quality. For instance, selecting a high TH will cause many ICs to be rejected, thereby leading to signal over-cleaning, and choosing a low TH may result in under-cleaning of the signal. Toward determining the optimal TH parameter, this study investigates the effect of six different TH groups (NO-TH and TH1-TH6) on EEG signals recorded from post-stroke patients who performed four distinct motor imagery (MI) tasks including wrist and grasping movements. Utilizing the EEG-beta band signal at the brain's sensorimotor cortex, the performance of the TH groups was evaluated using three notable EEG quantifiers. Overall, the obtained result shows that the considered THs will significantly alter neural oscillatory patterns. Comparing the performance of the TH-groups, TH-3 with a confidence level of 60% showed consistently stronger signal desynchronization and lateralization. The correlation result shows that most of the electrode pairs with high correlation values are replicable across all the MI tasks. It also revealed that brain activity correlates linearly with distance, and a strong correlation between electrode pairs is independent of the different brain cortices. The study outcome may facilitate adequate therapeutic intervention for stroke rehab.Clinical Relevance: This study indicated that optimal selection of the ICLabel artifactual rejection threshold is essential for EEG enhancement for adequate signal characterization. Thus, a TH-values with a confidence level between 50% - 70% would be suggested for artifactual ICs rejection in MI-EEG.


Assuntos
Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Encéfalo , Eletroencefalografia , Movimento , Punho
2.
Front Neurosci ; 17: 1018037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908798

RESUMO

Introduction: Electromyogram-based pattern recognition (EMG-PR) has been widely considered an essentially intuitive control method for multifunctional upper limb prostheses. A crucial aspect of the scheme is the EMG signal recording duration (SRD) from which requisite motor tasks are characterized per time, impacting the system's overall performance. For instance, lengthy SRD inevitably introduces fatigue (that alters the muscle contraction patterns of specific limb motions) and may incur high computational costs in building the motion intent decoder, resulting in inadequate prosthetic control and controller delay in practical usage. Conversely, relatively shorter SRD may lead to reduced data collection durations that, among other advantages, allow for more convenient prosthesis recalibration protocols. Therefore, determining the optimal SRD required to characterize limb motion intents adequately that will aid intuitive PR-based control remains an open research question. Method: This study systematically investigated the impact and generalizability of varying lengths of myoelectric SRD on the characterization of multiple classes of finger gestures. The investigation involved characterizing fifteen classes of finger gestures performed by eight normally limb subjects using various groups of EMG SRD including 1, 5, 10, 15, and 20 s. Two different training strategies including Between SRD and Within-SRD were implemented across three popular machine learning classifiers and three time-domain features to investigate the impact of SRD on EMG-PR motion intent decoder. Result: The between-SRD strategy results which is a reflection of the practical scenario showed that an SRD greater than 5 s but less than or equal to 10 s (>5 and < = 10 s) would be required to achieve decent average finger gesture decoding accuracy for all feature-classifier combinations. Notably, lengthier SRD would incur more acquisition and implementation time and vice-versa. In inclusion, the study's findings provide insight and guidance into selecting appropriate SRD that would aid inadequate characterization of multiple classes of limb motion tasks in PR-based control schemes for multifunctional prostheses.

3.
IEEE Trans Biomed Eng ; 70(5): 1516-1527, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36374882

RESUMO

Surface electromyogram (sEMG) is arguably the most sought-after physiological signal with a broad spectrum of biomedical applications, especially in miniaturized rehabilitation robots such as multifunctional prostheses. The widespread use of sEMG to drive pattern recognition (PR)-based control schemes is primarily due to its rich motor information content and non-invasiveness. Moreover, sEMG recordings exhibit non-linear and non-uniformity properties with inevitable interferences that distort intrinsic characteristics of the signal, precluding existing signal processing methods from yielding requisite motor control information. Therefore, we propose a multiresolution decomposition driven by dual-polynomial interpolation (MRDPI) technique for adequate denoising and reconstruction of multi-class EMG signals to guarantee the dual-advantage of enhanced signal quality and motor information preservation. Parameters for optimal MRDPI configuration were constructed across combinations of thresholding estimation schemes and signal resolution levels using EMG datasets of amputees who performed up to 22 predefined upper-limb motions acquired in-house and from the public NinaPro database. Experimental results showed that the proposed method yielded signals that led to consistent and significantly better decoding performance for all metrics compared to existing methods across features, classifiers, and datasets, offering a potential solution for practical deployment of intuitive EMG-PR-based control schemes for multifunctional prostheses and other miniaturized rehabilitation robotic systems that utilize myoelectric signals as control inputs.


Assuntos
Amputados , Membros Artificiais , Humanos , Reconhecimento Automatizado de Padrão/métodos , Eletromiografia/métodos , Amputados/reabilitação , Extremidade Superior , Algoritmos , Movimento
4.
J Neural Eng ; 19(3)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580572

RESUMO

Objective.For high-level peripheral nerve injuryed (PNI) patients with severe sensory dysfunction of upper extremities, identifying the multi-site tactile stimulation is of great importance to provide neurorehabilitation with sensory feedback. In this pilot study, we showed the feasibility of identifying multi-site and multi-intensity tactile stimulation in terms of electroencephalography (EEG).Approach.Three high-level PNI patients and eight non-PNI participants were recruited in this study. Four different sites over the upper arm, forearm, thumb finger and little finger were randomly stimulated at two intensities (both sensory-level) based on the transcutaneous electrical nerve stimulation. Meanwhile, 64-channel EEG signals were recorded during the passive tactile sense stimulation on each side.Main results.The spatial-spectral distribution of brain oscillations underlying multi-site sensory stimulation showed dominant power attenuation over the somatosensory and prefrontal cortices in both alpha-band (8-12 Hz) and beta-band (13-30 Hz). But there was no significant difference among different stimulation sites in terms of the averaged power spectral density over the region of interest. By further identifying different stimulation sites using temporal-spectral features, we found the classification accuracies were all above 89% for the affected arm of PNI patients, comparable to that from their intact side and that from the non-PNI group. When the stimulation site-intensity combinations were treated as eight separate classes, the classification accuracies were ranging from 88.89% to 99.30% for the affected side of PNI subjects, similar to that from their non-affected side and that from the non-PNI group. Other performance metrics, including specificity, precision, and F1-score, also showed a sound identification performance for both PNI patients and non-PNI subjects.Significance.These results suggest that reliable brain oscillations could be evoked and identified well, even though induced tactile sense could not be discerned by the PNI patients. This study have implication for facilitating bidirectional neurorehabilitation systems with sensory feedback.


Assuntos
Tato , Estimulação Elétrica Nervosa Transcutânea , Retroalimentação Sensorial/fisiologia , Dedos , Humanos , Nervos Periféricos , Projetos Piloto , Tato/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 791-794, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891409

RESUMO

Multi-channel Electroencephalograph (EEG) signal is an important source of neural information for motor imagery (MI) limb movement intent decoding. The decoded MI movement intent often serve as potential control input for brain-computer interface (BCI) based rehabilitation robots. However, the presence of multiple dynamic artifacts in EEG signal leads to serious processing challenge that affects the BCI system in practical settings. Hence, this study propose a hybrid approach based on Low-rank spatiotemporal filtering technique for concurrent elimination of multiple EEG artifacts. Afterwards, a convolutional neural network based deep learning model (ConvNet-DL) that extracts neural information from the cleaned EEG signal for MI tasks decoding was built. The proposed method was studied in comparison with existing artifact removal methods using EEG signals of transhumeral amputees who performed five different MI tasks. Remarkably, the proposed method led to significant improvements in MI task decoding accuracy for the ConvNet-DL model in the range of 8.00~13.98%, while up to 14.38% increment was recorded in terms of the MCC: Mathew correlation coefficients at p<0.05. Also, a signal to error ratio of more than 11 dB was recorded by the proposed method.Clinical Relevance- This study showed that a combination of the proposed hybrid EEG artifact removal method and ConvNet-DL can significantly improve the decoding accuracy of MI upper limb movement tasks. Our findings may provide potential control input for BCI rehabilitation robotic systems.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Artefatos , Eletroencefalografia , Imaginação
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 857-861, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891425

RESUMO

Surface myoelectric pattern recognition (sMPR) based control strategy is a popularly adopted scheme for multifunctional upper limb prostheses. Meanwhile, above-elbow amputees (transhumeral: TH) usually have limited residual arm muscles, that mostly hinder the provision of requisite signals necessary for physiologically appropriate sMPR control. Hence, the need to maximally explore the limited signals to realize adequate sMPR control scheme in practical settings. This study proposes an effective signal denoising method driven by Multi-scale Local Polynomial Transform (MLPT) concept that can improve the signal quality, thus allowing adequate decoding of TH amputees' motion intent from high-density electromyogram (HD-sEMG) signals. The proposed method's performance was systematically investigated with HD-sEMG signals obtained from TH amputees that performed multiple classes of targeted upper limb movement tasks, and compared with two common signal denoising methods based on wavelet transform. The obtained results show that the proposed MLPT method outperformed both existing methods for motion tasks decoding with over 13.0% increment in accuracy across subjects. The possibility of generating distinct and repeatable myoelectric contraction patterns using the MLPT based denoised HDs-EMG recordings was investigated. The obtained results proved that the MLPT method can better denoise and aid the reconstruction of myoelectric signal patterns of the amputees. Therefore, this suggest the potential of the MLPT method in characterizing high-level upper limb amputees' muscle activation patterns in the context of sMPR prostheses control scheme.


Assuntos
Amputados , Membros Artificiais , Eletromiografia , Humanos , Movimento , Extremidade Superior
7.
J Integr Neurosci ; 20(2): 297-305, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258928

RESUMO

Towards eliminating stimulus artifacts, alternating polarity stimuli have been widely adopted in eliciting the auditory brainstem response. However, considering the difference in the physiologic basis of the positive and negative polarity stimuli on the auditory system, it is unclear whether alternating polarity stimuli would adversely affect the auditory brainstem response characteristics. This research proposes a new polarity method for stimulus artifacts elimination, Sum polarity, that separately utilized the rarefaction and condensation stimuli and then summed the two evoked responses. We compared the waveform morphology and latencies of the auditory brainstem responses evoked by familiar stimuli (including click, tone-burst, and chirp) with different polarity methods in normal-hearing subjects to investigate the new method's effectiveness. The experimental results showed that alternating polarity of the click and chirp had little effect on the auditory brainstem response. In contrast, alternating polarity affected the waveform morphology and latencies of the auditory brainstem responses to the low-frequency tone-burst, with the effect decreasing as the stimulus frequency increased. These results demonstrated the performance of any polarity method is related to the characteristics of the stimulus signal itself, and no polarity method is optimal for all types of stimuli. Based on the analysis of experimental results, a fixed polarity and alternating polarity were recommended for the click and chirp auditory brainstem responses, respectively. Furthermore, considering the apparent latency differences between the responses to opposite polarity stimuli, the Sum polarity was suggested for the tone-burst auditory brainstem responses. Moreover, this work verified the feasibility of the Sum polarity, which offers another choice for eliminating stimulus artifacts in an evoked potential acquisition.


Assuntos
Percepção Auditiva/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
8.
J Neural Eng ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111849

RESUMO

BACKGROUND AND OBJECTIVE: Non-invasive multichannel Electroencephalography (EEG) recordings provide an alternative source of neural information from which motor imagery (MI) patterns associated with limb movement intent can be decoded for use as control inputs for rehabilitation robots. The presence of multiple inherent dynamic artifacts in EEG signals, however, poses processing challenges for brain-computer interface (BCI) systems. A large proportion of the existing EEG signal preprocessing methods focus on isolating single artifact per time from an ensemble of EEG trials and require calibration and/or reference electrodes, resulting in increased complexity of their application to MI-EEG controlled rehabilitation devices in practical settings. Also, a few existing multi-artifacts removal methods though explored in other domains, they have rarely been investigated in the space of MI-EEG signals for multiple artifacts cancellation in a simultaneous manner. APPROACH: Building on the premise of previous works, this study propose a semi-automatic EEG preprocessing method that combines Generalized Eigenvalue Decomposition driven by low-rank approximation and a Multi-channel Wiener Filter (GEVD-MWF) that employs a learning technique for simultaneous elimination of multiple artifacts from MI-EEG signals. The proposed method is applied to remove multiple artifacts from 64-channel EEG signals recorded from transhumeral amputees while they performed distinct classes of upper limb MI tasks before decoding their movement intent using a selection of features and machine learning algorithms. MAIN RESULTS: Experimental results show that the proposed GEVD-MWF method yields significant improvements in MI decoding accuracies, in the range of 13.23%-41.21% compared to four existing popular artifact removal algorithms. Further investigation revealed that the GEVD-MWF approach enabled accuracies in the range of 90.44% - 99.67% using "single trial" EEG recordings, which could eliminate the need to record and process large ensembles of EEG trials as commonly required in some existing approaches. Additionally, using a variant of the sequential forward floating selection algorithm, a subset of 9 channels was used to obtain a decoding accuracy of 93.73%±1.58%. SIGNIFICANCE: Given its improved performance, reduced data requirements, and feasibility with few channels, the proposed GEVD-MWF could potentially spur the development of effective real-time control strategies for multi-degree of freedom EEG-based miniaturized rehabilitation robotic interfaces.

9.
Comput Methods Programs Biomed ; 184: 105278, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31901634

RESUMO

BACKGROUND AND OBJECTIVE: Mobility of subject (MoS) and muscle contraction force variation (MCFV) have been shown to individually degrade the performance of multiple degrees of freedom electromyogram (EMG) pattern recognition (PR) based prostheses control systems. Though these factors (MoS-MCFV) co-exist simultaneously in the practical use of the prosthesis, their combined impact on PR-based system has rarely been studied especially in the context of amputees who are the target users of the device. METHODS: To address this problem, this study systematically investigated the co-existing impact of MoS-MCFV on the performance of PR-based movement intent classifier, using EMG recordings acquired from eight participants who performed multiple classes of targeted limb movements across static and non-static scenarios with three distinct muscle contraction force levels. Then, a robust feature extraction method that is invariant to the combined effect of MoS-MCFV, namely, invariant time-domain descriptor (invTDD), was proposed to optimally characterize the multi-class EMG signal patterns in the presence of both factors. RESULTS: Experimental results consistently showed that the proposed invTDD method could significantly mitigate the co-existing impact of MoS-MCFV on PR-based movement-intent classifier with error reduction in the range of 7.50%~17.97% (p<0.05), compared to the commonly applied methods. Further evaluation using 2-dimentional principal component analysis (PCA) technique, revealed that the proposed invTDD method has obvious class-separability in the PCA feature space, with a significantly lower standard error (0.91%) compared to the existing methods. CONCLUSION: This study offers compelling insight on how to develop accurately robust multiple degrees of freedom control scheme for multifunctional prostheses that would be clinically viable. Also, the study may spur positive advancement in other application areas of medical robotics that adopts myoelectric control schemes such as the electric wheelchair and human-computer-interaction systems.


Assuntos
Membros Artificiais , Eletromiografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Feminino , Humanos , Masculino , Movimento/fisiologia , Análise de Componente Principal , Adulto Jovem
10.
Adv Exp Med Biol ; 1101: 149-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31729675

RESUMO

As an integral part of the body, the limb poses dexterous and fine motor grasping and sensing capabilities that enable humans to effectively communicate with their environment during activities of daily living (ADL). Hence, limb loss severely limits individuals' ability especially when they need to perform tasks requiring their limb functions during ADL, thus leading to decreased quality of life. To effectively restore limb functions in amputees, the advanced prostheses that are controlled by electromyography (EMG) signal have been widely investigated and used. Since EMG signals reflect neural activity, they would contain information on the muscle activation related to limb motions. Pattern recognition-based myoelectric control is an important branch of the EMG-based prosthetic control. And the EMG-based prosthetic control theoretically supports multiple degrees of freedom movements  that allows amputees to intuitively manipulate the device. This chapter focuses on EMG-based prosthetic control strategy that involves utilizing intelligent computational technique to decode upper limb movement intentions from which control commands are derived. Additionally, different techniques/methods for improving the overall performance of EMG-based prostheses control strategy were introduced and discussed in this chapter.


Assuntos
Membros Artificiais , Eletromiografia , Atividades Cotidianas , Humanos , Movimento , Qualidade de Vida
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3513-3516, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441136

RESUMO

Electromyogram pattern recognition (EMG-PR) based control is a potential method capable of providing intuitively dexterous control functions in upper limb prostheses. Meanwhile, the feature extraction method adopted in EMG-PR based control is considered as an important factor that influences the performance of the prostheses. By exploiting the limitations of the existing feature extraction methods, this study proposed a new feature extraction method to effectively characterize EMG signal patterns associated with different limb movement intent. The performance of the proposed 2-dimensional novel time-domain feature set (NTDFS) was investigated using classification accuracy and feature space separability metrics across five subjects' EMG recordings, and compared with four different existing methods. In comparison to four other previously proposed feature extraction methods, the NTDFS achieved significantly better performance with increment in accuracy in the range of 5.20% ∼ 8.40% at p<0.05. Additionally, by applying principal component analysis (PCA) technique, the PCA feature space for NTDFS show obvious class separability in comparison to the other existing feature extraction methods. Thus, the proposed NTDFS may facilitate the development of accurate and robust clinically viable EMG-PR based prostheses.


Assuntos
Membros Artificiais , Reconhecimento Automatizado de Padrão , Extremidade Superior , Algoritmos , Eletromiografia , Movimento
12.
Comput Biol Med ; 90: 76-87, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961473

RESUMO

Electromyogram pattern recognition (EMG-PR) based control for upper-limb prostheses conventionally focuses on the classification of signals acquired in a controlled laboratory setting. In such a setting, relatively stable and high performances are often reported because subjects could consistently perform muscle contractions corresponding to a targeted limb motion. Meanwhile the clinical implementation of EMG-PR method is characterized by degradations in stability and classification performances due to the disparities between the constrained laboratory setting and clinical use. One of such disparities is the mobility of subject that would cause changes in the EMG signal patterns when eliciting identical limb motions in mobile scenarios. In this study, the effect of mobility on the performance of EMG-PR motion classifier was firstly investigated based on myoelectric and accelerometer signals acquired from six upper-limb amputees across four scenarios. Secondly, three methods were proposed to mitigate such effect on the EMG-PR motion classifier. From the obtained results, an average classification error (CE) of 9.50% (intra-scenario) was achieved when data from the same scenarios were used to train and test the EMG-PR classifier, while the CE increased to 18.48% (inter-scenario) when trained and tested with dataset from different scenarios. This implies that mobility would significantly lead to about 8.98% increase of classification error (p < 0.05). By applying the proposed methods, the degradation in classification performance was significantly reduced from 8.98% to 1.86% (Dual-stage sequential method), 3.17% (Hybrid strategy), and 4.64% (Multi-scenario strategy). Hence, the proposed methods may potentially improve the clinical robustness of the currently available multifunctional prostheses. TRIAL REGISTRATION: The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.


Assuntos
Membros Artificiais , Bases de Dados Factuais , Eletromiografia , Processamento Eletrônico de Dados/métodos , Reconhecimento Automatizado de Padrão/métodos , Extremidade Superior , Criança , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...