Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Surviv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954249

RESUMO

PURPOSE: Partners of breast cancer (BC) survivors report high rates of psychological distress including fear of cancer recurrence (FCR). Research suggests that partners may have poorer physical health outcomes than the general population, but little research has examined the physiological biomarkers by which distress may impact partner health outcomes. The current study examined the associations between FCR and changes in hair cortisol among BC partners. METHODS: Male partners (N = 73) of early-stage BC survivors provided hair samples during two visits, one after completion of survivors' adjuvant treatment (T1) and again 6 months later (T2). Two subscales from the Fear of Cancer Recurrence Inventory and one subscale from the Concerns about Recurrence Scale comprised a latent FCR factor at T1. A latent change score model was used to examine change in cortisol as a function of FCR. RESULTS: Partners were on average 59.65 years of age (SD = 10.53) and non-Hispanic White (83%). Latent FCR at T1 was positively associated (b = 0.08, SE = 0.03, p = .004, standardized ß = .45) with change in latent hair cortisol from T1 to T2. CONCLUSIONS: Results indicated that greater FCR was associated with increases in hair cortisol in the months following adjuvant treatment. This is one of the first studies to examine the physiological correlates of FCR that may impact health outcomes in BC partners. IMPLICATIONS FOR CANCER SURVIVORS: Findings highlight the need for further research into the relationship between FCR and its physiological consequences. Interventions to address partner FCR are needed and may aid in improving downstream physical health outcomes.

2.
Cell ; 186(19): 4152-4171.e31, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669667

RESUMO

Social preference, the decision to interact with one member of the same species over another, is critical to optimize social interactions. Thus, adult rodents favor interacting with novel conspecifics over familiar ones, but whether this social preference stems from neural circuits facilitating interactions with novel individuals or suppressing interactions with familiar ones remains unknown. Here, we identify neurons in the infra-limbic area (ILA) of the mouse prefrontal cortex that express the neuropeptide corticotropin-releasing hormone (CRH) and project to the dorsal region of the rostral lateral septum (rLS). We show how release of CRH during familiar encounters disinhibits rLS neurons, thereby suppressing social interactions with familiar mice and contributing to social novelty preference. We further demonstrate how the maturation of CRH expression in ILA during the first 2 post-natal weeks enables the developmental shift from a preference for littermates in juveniles to a preference for novel mice in adults.


Assuntos
Hormônio Liberador da Corticotropina , Córtex Pré-Frontal , Animais , Camundongos , Neurônios , Transdução de Sinais , Percepção
3.
Proc Natl Acad Sci U S A ; 120(6): e2114747120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716374

RESUMO

Biomolecular condensates, membraneless organelles found throughout the cell, play critical roles in many aspects of cellular function. Ribonucleoprotein granules (RNPs) are a type of biomolecular condensate necessary for local protein synthesis and are involved in synaptic plasticity and long-term memory. Most of the proteins in RNPs possess low-complexity motifs (LCM), allowing for increased promiscuity of protein-protein interactions. Here, we describe the importance of protein-protein interactions mediated by the LCM of RNA-binding protein cytoplasmic polyadenylation element binding protein 3 (CPEB3). CPEB3 is necessary for long-term synaptic plasticity and memory persistence, but the mechanisms involved are still not completely elucidated. We now present key mechanisms involved in its regulation of synaptic plasticity. We find that CPEB3-LCM plays a role in appropriate local protein synthesis of messenger ribonucleic acid (mRNA) targets, through crucial protein-protein interactions that drive localization to neuronal Decapping protein 1 (DCP1)-bodies. Translation-promoting CPEB3 and translation-inhibiting CPEB1 are packaged into neuronal RNP granules immediately after chemical long-term potentiation is induced, but only translation-promoting CPEB3 is repackaged to these organelles at later time points. This localization to neuronal RNP granules is critical for functional influence on translation as well as overall local protein synthesis (measured as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) insertion into the membrane and localization to the synapse). We therefore conclude that protein-protein interaction between the LCM of CPEB3 plays a critical role in local protein synthesis by utilizing neuronal RNP granules.


Assuntos
Memória de Longo Prazo , Neurônios , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas de Ligação a RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo
5.
Nat Commun ; 13(1): 3805, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778414

RESUMO

Optimal behavior requires interpreting environmental cues that indicate when to perform actions. Dopamine is important for learning about reward-predicting events, but its role in adapting to inhibitory cues is unclear. Here we show that when mice can earn rewards in the absence but not presence of an auditory cue, dopamine level in the ventral striatum accurately reflects reward availability in real-time over a sustained period (80 s). In addition, unpredictable transitions between different states of reward availability are accompanied by rapid (~1-2 s) dopamine transients that deflect negatively at the onset and positively at the offset of the cue. This Dopamine encoding of reward availability and transitions between reward availability states is not dependent on reward or activity evoked dopamine release, appears before mice learn the task and is sensitive to motivational state. Our findings are consistent across different techniques including electrochemical recordings and fiber photometry with genetically encoded optical sensors for calcium and dopamine.


Assuntos
Dopamina , Estriado Ventral , Animais , Sinais (Psicologia) , Dopamina/fisiologia , Camundongos , Núcleo Accumbens , Recompensa
6.
Mol Psychiatry ; 27(6): 2879-2900, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33990774

RESUMO

The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.


Assuntos
Interneurônios , Peptídeo Intestinal Vasoativo , Encefalinas/farmacologia , Neurônios GABAérgicos , Hipocampo , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(18): 9991-10002, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312805

RESUMO

The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain's initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2 Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC-NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.


Assuntos
Comportamento Aditivo/genética , Comportamento Animal/efeitos dos fármacos , Canabinoides/efeitos adversos , Cocaína/efeitos adversos , Adolescente , Animais , Comportamento Aditivo/induzido quimicamente , Comportamento Aditivo/patologia , Benzoxazinas/efeitos adversos , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cocaína/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/genética , Humanos , Proteínas de Membrana/farmacologia , Morfolinas/efeitos adversos , Morfolinas/farmacologia , Naftalenos/efeitos adversos , Naftalenos/farmacologia , Fosfoproteínas/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Córtex Pré-Frontal/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Ratos , Transcriptoma/efeitos dos fármacos
8.
Front Behav Neurosci ; 13: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967765

RESUMO

The generalization of fear is adaptive in that it allows an animal to respond appropriately to novel threats that are not identical to previous experiences. In contrast, the overgeneralization of fear is maladaptive and is a hallmark of post-traumatic stress disorder (PTSD), a psychiatric illness that is characterized by chronic symptomatology and a higher incidence in women compared to men. Therefore, understanding the neural basis of fear generalization at remote time-points in female animals is of particular translational relevance. However, our understanding of the neurobiology of fear generalization is largely restricted to studies employing male mice and focusing on recent time-points (i.e., within 24-48 h following conditioning). To address these limitations, we examined how male and female mice generalize contextual fear at remote time intervals (i.e., 3 weeks after conditioning). In agreement with earlier studies of fear generalization at proximal time-points, we find that the test order of training and generalization contexts is a critical determinant of generalization and context discrimination, particularly for female mice. However, tactile elements that are present during fear conditioning are more salient for male mice. Our study highlights long-term sex differences in defensive behavior between male and female mice and may provide insight into sex differences in the processing and retrieval of remote fear memory observed in humans.

9.
Trends Neurosci ; 42(1): 14-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391015

RESUMO

Over the past half-century, we have gained significant insights into the molecular biology of long-term memory storage at the level of the synapse. In recent years, our understanding of the cellular architecture supporting long-term memory traces has also substantially improved. However, the molecular biology of consolidation at the level of neuronal systems has been relatively neglected. In this opinion article, we first examine our current understanding of the cellular mechanisms of synaptic consolidation. We then outline areas requiring further investigation on how cellular changes contribute to systems consolidation. Finally, we highlight recent findings on the cellular architecture of memory traces in rodents and how the application of new technologies will expand our understanding of systems consolidation at the neural circuit level. In the coming years, this research focus will be critical for understanding the evolution of long-term memories and for enabling the development of novel therapeutics which embrace the dynamic nature of memories.


Assuntos
Memória de Longo Prazo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Humanos , Modelos Neurológicos , Neurônios/fisiologia
10.
Nature ; 564(7735): 213-218, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518859

RESUMO

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Assuntos
Agressão/fisiologia , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/fisiologia , Inibição Neural , Vias Neurais/fisiologia , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Comportamento Social , Animais , Arginina Vasopressina/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Motivação , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Células Piramidais/metabolismo , Receptores de Vasopressinas/metabolismo , Transmissão Sináptica , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia
11.
Behav Neurosci ; 132(6): 497-511, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30346189

RESUMO

The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which learning about the context (preexposure) and associating the context with a shock (training) occur on separate occasions. The CPFE is sensitive to a range of neonatal alcohol doses (Murawski & Stanton, 2011). The current study examined the impact of neonatal alcohol on Egr-1 mRNA expression in the infralimbic (IL) and prelimbic (PL) subregions of the mPFC, the CA1 of dorsal hippocampus (dHPC), and the lateral nucleus of the amygdala (LA), following the preexposure and training phases of the CPFE. Rat pups were exposed to a 5.25 g/kg/day single binge-like dose of alcohol (Group EtOH) or were sham intubated (SI; Group SI) over postnatal days (PD) 7-9. In behaviorally tested rats, alcohol administration disrupted freezing. Following context preexposure, Egr-1 mRNA was elevated in both EtOH and SI groups compared with baseline control animals in all regions analyzed. Following both preexposure and training, Group EtOH displayed a significant decrease in mPFC Egr-1 mRNA expression compared with Group SI. However, this decrease was greatest after training. Training day decreases in Egr-1 expression were not found in LA or CA1 in Group EtOH compared with Group SI. A second experiment confirmed that the EtOH-induced training-day deficits in mPFC Egr-1 mRNA expression were specific to groups which learned contextual fear (vs. nonassociative controls). Thus, memory processes that engage the mPFC during the context-shock association may be most susceptible to the teratogenic effects of neonatal alcohol. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Etanol/toxicidade , Aprendizagem/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , RNA Mensageiro/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/metabolismo , Animais , Animais Recém-Nascidos , Depressores do Sistema Nervoso Central/toxicidade , Medo/efeitos dos fármacos , Medo/fisiologia , Feminino , Transtornos do Espectro Alcoólico Fetal , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Aprendizagem/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos Long-Evans
12.
Dev Psychopathol ; 30(4): 1211-1223, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29229013

RESUMO

Exposure to childhood adversity has been linked to accelerated telomere shortening, a marker of cellular aging and an indicator of physical health risk. In the current study, we examined whether adult attachment representation moderated the association between childhood adversity and telomere length. Participants included 78 young adults (M age = 20.46, SD = 1.57), who reported on their exposure to adverse childhood experiences (ACE) and were administered the Adult Attachment Interview, which was coded for attachment state of mind. Relative telomere length was assayed from buccal cells. Multiple regression analyses revealed a significant interaction between attachment state of mind and ACE in predicting telomere length. Whereas the association between number of ACE and telomere length was nonsignificant for secure-autonomous, r (50) = -.15, p = .31, and insecure-preoccupied young adults, r (9) = -.15, p = .71, there was a strong negative association between number of ACE and telomere length for insecure-dismissing young adults, r (19) = -.59, p = .007. This study is novel in demonstrating that attachment may affect biological resilience following childhood adversity, contributing to the growing literature about the role of the quality of early caregiving experiences and their representations in shaping biological processes and physical health.


Assuntos
Adultos Sobreviventes de Eventos Adversos na Infância/psicologia , Senescência Celular/fisiologia , Acontecimentos que Mudam a Vida , Apego ao Objeto , Encurtamento do Telômero , Adolescente , Feminino , Humanos , Masculino , Adulto Jovem
13.
Front Behav Neurosci ; 12: 329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697153

RESUMO

The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.

14.
Int J Dev Neurosci ; 62: 56-62, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28330827

RESUMO

DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Metilação de DNA/genética , Epigênese Genética/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico , Homeostase do Telômero/fisiologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Masculino , Gravidez , Resultado da Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
15.
Neurosci Lett ; 637: 80-84, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27888041

RESUMO

The precise contribution of visual information to contextual fear learning and discrimination has remained elusive. To better understand this contribution, we coupled the context pre-exposure facilitation effect (CPFE) fear conditioning paradigm with presentations of distinct visual scenes displayed on 4 LCD screens surrounding a conditioning chamber. Adult male Long-Evans rats received non-reinforced context pre-exposure on Day 1, an immediate 1.5mA foot shock on Day 2, and a non-reinforced context test on Day 3. Rats were pre-exposed to either digital Context (dCtx) A, dCtx B, a distinct Ctx C, or no context on Day 1. Digital context A and B were identical except for the visual image displayed on the LCD screens. Immediate shock and retention testing occurred in dCtx A. Rats pre-exposed dCtx A showed the CPFE with significantly higher levels of freezing compared to controls. Rats pre-exposed to Context B failed to show the CPFE, with freezing that did not highly differ from controls. These results suggest that visual information contributes to contextual fear learning and that visual components of the context can be manipulated via LCD screens. Our approach offers a simple modification to contextual fear conditioning paradigms whereby the visual features of a context can be manipulated to better understand the factors that contribute to contextual fear discrimination and generalization.


Assuntos
Condicionamento Clássico/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Hipocampo/fisiologia , Animais , Eletrochoque/métodos , Masculino , Ratos Long-Evans , Reforço Psicológico , Visão Ocular
16.
Psychoneuroendocrinology ; 70: 17-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153520

RESUMO

The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear.


Assuntos
Medo/fisiologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Núcleos Septais/metabolismo , Animais , Comportamento Animal , Condicionamento Clássico , Hormônio Liberador da Corticotropina/metabolismo , Emoções , Masculino , Odorantes , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/efeitos dos fármacos , Tiazóis/farmacologia
17.
Dev Psychobiol ; 58(2): 176-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26394891

RESUMO

The present study investigated whether repeated early postnatal exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) alters behavioral responses to the stimulus later in life, at postnatal day (PN30). Long-Evans rat pups with their mothers were exposed for 20 min daily to TMT, water, or a noxious odor, butyric acid (BTA), during the first three weeks of life. Mothers exposed to TMT displayed more crouching and nursing behavior than those exposed to BTA, and TMT exposed pups emitted more ultrasonic vocalizations than BTA exposed pups. At PN30, rats were tested for freezing to TMT, water, or BTA. Rats exposed to TMT during the postnatal period displayed less freezing to TMT than rats exposed postnatally to water or BTA. Our data indicate that early-life experience with a predator cue has a significant impact on later fear responses to that same cue, highlighting the programming capacity of the postnatal environment on the development of behavior.


Assuntos
Comportamento Animal/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Comportamento Materno/fisiologia , Odorantes , Vocalização Animal/fisiologia , Animais , Animais Recém-Nascidos , Ácido Butírico , Feminino , Masculino , Ratos , Ratos Long-Evans , Tiazóis , Água
18.
Front Neurosci ; 9: 292, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379483

RESUMO

In the last several years, the importance of understanding what innate threat and fear is, in addition to learning of threat and fear, has become evident. Odors from predators are ecologically relevant stimuli used by prey animals as warnings for the presence of danger. Of importance, these odors are not necessarily noxious or painful, but they have innate threat-like properties. This review summarizes the progress made on the behavioral and neuroanatomical fundamentals of innate fear of the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a component of fox feces. TMT is one of several single molecule components of predator odors that have been isolated in the last several years. Isolation of these single molecules has allowed for rapid advances in delineating the behavioral constraints and selective neuroanatomical pathways of predator odor induced fear. In naïve mice and rats, TMT induces a number of fear and defensive behaviors, including robust freezing, indicating it is an innate threat stimulus. However, there are a number of behavioral constraints that we do not yet understand. Similarly, while some of the early olfactory sensory pathways for TMT-induced fear are being delineated, the pathways from olfactory systems to emotional and motor output regions are less well understood. This review will focus on what we know and what we still need to learn about the behavior and neuroanatomy of TMT-induced fear.

19.
Stress ; 18(6): 607-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305287

RESUMO

Infant-caregiver experiences are major contributing factors to neural and behavioral development. Research indicates that epigenetic mechanisms provide a way in which infant-caregiver experiences affect gene activity and other downstream processes in the brain that influence behavioral development. Our laboratory previously demonstrated in a rodent model that exposure to maltreatment alters methylation of DNA associated with the brain-derived neurotrophic factor (bdnf) and reelin genes as well as mRNA of key epigenetic regulatory genes in the medial prefrontal cortex (mPFC). In the current study, we characterized patterns of histone acetylation at bdnf and reelin gene loci after our caregiver manipulations. Using a within-litter design (n = 8-10/group from eight litters), pups were exposed to adverse (maltreatment condition: exposure to a stressed caregiver) or nurturing (cross-foster condition: exposure to a nurturing caregiver) caregiving environments outside the home cage for 30 min daily during the first postnatal week. Remaining pups in a litter were left with the biological mother during each session (providing normal care controls). We then used chromatin immunoprecipitation (ChIP) and quantitative RT-PCR to measure histone 3 lysine 9/14 acetylation associated with bdnf promoters I and IV and the reelin promoter in the adult mPFC. Maltreated females had decreased acetylation at bdnf IV, while neither males nor females exhibited histone acetylation alterations at bdnf I or reelin. These data demonstrate the ability of maltreatment to have long-term consequences on histone acetylation in the mPFC, and provide further evidence of the epigenetic susceptibility of bdnf IV to the quality of infant-caregiver experiences.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética , Histonas/metabolismo , Córtex Pré-Frontal/metabolismo , Acetilação , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Histonas/genética , Masculino , Comportamento Materno , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Ratos , Proteína Reelina , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
20.
Front Behav Neurosci ; 9: 79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904853

RESUMO

Early childhood is a sensitive period in which infant-caregiver experiences have profound effects on brain development and behavior. Clinical studies have demonstrated that infants who experience stress and adversity in the context of caregiving are at an increased risk for the development of psychiatric disorders. Animal models have helped to elucidate some molecular substrates of these risk factors, but a complete picture of the biological basis remains unknown. Studies continue to indicate that environmentally-driven epigenetic modifications may be an important mediator between adverse caregiving environments and psychopathology. Epigenetic modifications such as DNA methylation, which normally represses gene transcription, and microRNA processing, which interferes with both transcription and translation, show long-term changes throughout the brain and body following adverse caregiving. Recent evidence has also shown that telomeres (TTAGGG nucleotide repeats that cap the ends of DNA) exhibit long-term changes in the brain and in the periphery following exposure to adverse caregiving environments. Interestingly, telomeric enzymes and subtelomeric regions are subject to epigenetic modifications-a factor which may play an important role in regulating telomere length and contribute to future mental health. This review will focus on clinical and animal studies that highlight the long-term epigenetic and telomeric changes produced by adverse caregiving in early-life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA