Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 126(5): 375-384, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501033

RESUMO

Mat-forming lichens dominating high-latitudinal habitats vary in color and geometry. Widespread species are light greenish yellow (usnic acid) and reflect solar radiation, whereas melanic species absorbing most solar wavelengths are spatially more restricted. Color thereby influences lichens' energy budget and thus their hydration and photosynthetically active periods. By using well-defined cushions from early successional stages on glacier forelands - three melanic(m) and three usnic(u) mat-forming lichens with hair-like branches (Alectoria ochroleuca(u), Gowardia nigricans(m)), hollow terete branches (Cladonia uncialis(u), Cetraria muricata(m)), and flat branches (Flavocetraria nivalis(u), Cetraria islandica(m)) - we quantified hydration traits and analyzed how color and cushion size affect water loss rate (WLR) and duration of active periods. Main findings: 1) WLR declined with cushion size and was highest in melanic lichens. 2) Active periods were longer for usnic than for melanic lichens and increased with size in all groups. 3) Size, color, and taxon nested in color significantly influenced WLR and duration of active periods in linear mixed models. 4) Hair lichen cushions had shorter active periods than growth forms with terete or flat branches due to their more open canopy architecture and lower water holding capacity (WHC). 5) WHC measured for isolated branches highly underestimated WHC for intact cushions.


Assuntos
Líquens , Ecossistema , Camada de Gelo , Luz Solar , Água
3.
Microorganisms ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917569

RESUMO

Community ecology has experienced a major transition, from a focus on patterns in taxonomic composition, to revealing the processes underlying community assembly through the analysis of species functional traits. The power of the functional trait approach is its generality, predictive capacity such as with respect to environmental change, and, through linkage of response and effect traits, the synthesis of community assembly with ecosystem function and services. Lichens are a potentially rich source of information about how traits govern community structure and function, thereby creating opportunity to better integrate lichens into 'mainstream' ecological studies, while lichen ecology and conservation can also benefit from using the trait approach as an investigative tool. This paper brings together a range of author perspectives to review the use of traits in lichenology, particularly with respect to European ecosystems from the Mediterranean to the Arctic-Alpine. It emphasizes the types of traits that lichenologists have used in their studies, both response and effect, the bundling of traits towards the evolution of life-history strategies, and the critical importance of scale (both spatial and temporal) in functional trait ecology.

4.
Planta ; 253(1): 14, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33392847

RESUMO

MAIN CONCLUSION: During desiccation, both apparent electron transport rate (ETRapp) and photosynthetic CO2 uptake peak when external water has evaporated. External water, causing suprasaturation, weakens the strong correlation between ETRapp and CO2 uptake. Lichens are poikilohydric organisms passively regulated by ambient conditions. In theory, apparent electron transport rate (ETRapp), estimated by photosystem II yield measured in light (ΦPSII), is a proxy of photosynthetic CO2 uptake. Hydration level, however, is a complicating factor, particularly during suprasaturation that strongly reduces CO2 diffusion. Here, the cephalolichen Lobaria pulmonaria and two chlorolichens Parmelia sulcata and Xanthoria aureola were excessively hydrated before photosynthetic CO2 uptake and ΦPSII using imaging fluorescence tools were simultaneously measured while drying at 200 µmol photons m-2 s-1. CO2 uptake peaked when hydration had declined to a level equivalent to their respective internal water holding capacity (WHCinternal) i.e., the water per thallus area after blotting external water. CO2 uptake and ETRapp in all species were highly correlated at hydration levels below WHCinternal, but weaker at higher hydration (chlorolichens) or absent (cephalolichen). Yet, at a specimen level for the two chlorolichens, the correlation was strong during suprasaturation. The CO2 uptake-ETRapp relationship did not differ between measured species, but may vary between other lichens because the slope depends on cortical transmittance and fraction of electrons not used for CO2 uptake. For new lichen species, calibration of ETRapp against CO2 uptake is therefore necessary. At intrathalline scales, ΦPSII during drying initially increased along thallus margins before reaching maximum values in central portions when hydration approached WHCinternal. WHCinternal represents the optimal hydration level for lichen photosynthesis. In conclusion, ETRapp is an easily measured and reliable proxy of CO2 uptake in thalli without external water but overestimates photosynthesis during suprasaturation.


Assuntos
Dióxido de Carbono , Transporte de Elétrons , Líquens , Ascomicetos/metabolismo , Dióxido de Carbono/metabolismo , Clorofila , Líquens/metabolismo , Luz , Parmeliaceae/metabolismo , Fotossíntese/fisiologia
5.
FEMS Microbiol Ecol ; 95(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481314

RESUMO

Beech forests reaches its native distribution limit in SE Norway, but is expected to expand substantially northwards due to climate warming. This may potentially result in a fundamental transformation of contemporary Northern European forests, with tentative effects on the associated belowground fungi. Fungal communities mediate vital ecosystem processes such as ecosystem productivity and carbon sequestration in boreal forests. To investigate how soil fungi is affected by the vegetation transition from spruce to beech forest, we sampled litter, humus and mineral soil in a forest landscape dominated by beech, spruce or a mixture of these. The fungal communities in the soil samples were analyzed by DNA metabarcoding of the rDNA ITS2 region. Although soil layers were the most important structuring gradient, we found clear differences in fungal species composition between spruce and beech plots. The differences in fungal community composition were most evident in the litter and least in the mineral soil. Decomposers, most notably Mycena, dominated the litter layer while various mycorrhizal fungi dominated the humus and mineral layers. Some ectomycorrhizal taxa, such as Cenoccocum and Russula, were more abundant in spruce forests. Differences in fungal community composition between forest types can potentially have large impacts on carbon sequestration rates.


Assuntos
Agaricales/isolamento & purificação , Basidiomycota/isolamento & purificação , Fagus/microbiologia , Micorrizas/crescimento & desenvolvimento , Picea/microbiologia , Saccharomycetales/isolamento & purificação , Sequestro de Carbono , Clima , Ecossistema , Minerais , Micobioma , Noruega , Solo/química , Microbiologia do Solo , Taiga , Árvores/microbiologia
6.
Front Plant Sci ; 9: 770, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930566

RESUMO

Nitrogen availability limits growth in most boreal forests. However, parts of the boreal zone receive significant levels of nitrogen deposition. At the same time, forests are fertilized to increase volume growth and carbon sequestration. No matter the source, increasing nitrogen in the boreal forest ecosystem will influence the resource situation for its primary producers, the plants, with possible implications for their defensive chemistry. In general, fertilization reduces phenolic compound concentrations in trees, but existing evidence mainly comes from studies on young plants. Given the role of the phenolic compounds in protection against herbivores and other forest pests, it is important to know if phenolics are reduced with fertilization also in mature trees. The evergreen Norway spruce is long-lived, and it is reasonable that defensive strategies could change from the juvenile to the reproductive and mature phases. In addition, as the needles are kept for several years, defense could also change with needle age. We sampled current and previous year needles from an N fertilization experiment in a Norway spruce forest landscape in south-central Norway to which N had been added annually for 13 years. We analyzed total nitrogen (N) and carbon (C), as well as low-molecular phenolics and condensed tannins. Needles from fertilized trees had higher N than those from controls plots, and fertilization decreased concentrations of many flavonoids, as well as condensed tannins in current year needles. In previous year needles, some stilbenes and condensed tannins were higher in fertilized trees. In control trees, the total phenolic concentration was almost five times as high in previous year needles compared with those from the current year, and there were great compositional differences. Previous year needles contained highest concentrations of acetophenone and stilbenes, while in the current year needles the flavonoids, and especially coumaroyl-astragalins dominated. Condensed tannins did not differ between current and previous year needles from control trees. In conclusion, the phenolic defense of current year needles of mature P.abies trees was strongly changed upon fertilization. This may imply that nitrogen deposition and forest fertilization leave forests less robust in a time when pests may take advantages of a changing climate.

8.
Biol Rev Camb Philos Soc ; 92(3): 1720-1738, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27730713

RESUMO

Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include understanding how the high intraspecific trait variation that characterizes many lichens impacts on community assembly processes and ecosystem functioning, how multiple species mixtures of lichens affect the key community- and ecosystem-level processes that they drive, the extent to which lichens in early succession influence vascular plant succession and ecosystem development in the longer term, and how global change drivers may impact on ecosystem functioning through altering the functional composition of lichen communities.


Assuntos
Ecossistema , Líquens/fisiologia , Animais , Invertebrados/fisiologia , Plantas
9.
New Phytol ; 211(4): 1352-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094697

RESUMO

Lichens are hosts for a variety of lichenicolous fungi. By investigating two lichens with specialized parasites, we will test the hypothesis that these parasites reduce lichen fitness by increasing the palatability of their respective hosts. The palatability of Lobarina scrobiculata and Lobaria pulmonaria with or without galls of the lichenicolous fungi, Plectocarpon scrobiculatae and P. lichenum, respectively, were quantified in a feeding-preference experiment with grazing snails (Cepaea hortensis). We repeated the experiment for pairs with or without gall in which the carbon-based secondary compounds (CBSCs) had been reduced nondestructively by acetone rinsing. Lichens with galls had lower concentration of CBSCs than those without, but this contrast disappeared after acetone rinsing. In the lichen high in nitrogen (N) (the cyanolichen L. scrobiculata), the grazing was low, and the snails did not discriminate between specimens with and without Plectocarpon-galls. In L. pulmonaria low in N (green algae as main photobiont), the parasite reduced the lichen C : N ratio and the snails strongly preferred specimens with Plectocarpon-galls, regardless of whether CBSC concentration had been reduced or not. In conclusion, some lichen parasites can indirectly reduce lichen fitness by increasing its palatability and thus the grazing pressure from snails, whereas other parasites do not affect grazing preferences.


Assuntos
Ascomicetos/fisiologia , Cadeia Alimentar , Líquens/microbiologia , Parasitos/fisiologia , Caramujos/microbiologia , Animais , Carbono/metabolismo , Comportamento Alimentar , Nitrogênio/metabolismo
10.
Sci Total Environ ; 541: 795-801, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26437350

RESUMO

Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.


Assuntos
Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental , Líquens/metabolismo , Metais Pesados/metabolismo , Ascomicetos/metabolismo , Carbono/metabolismo , Veículos Automotores , Noruega
11.
Ecology ; 96(9): 2394-407, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594697

RESUMO

While there has been much interest in the relationships between traits of primary producers and composition of associated invertebrate consumer communities, our knowledge is largely based on studies from vascular plants, while other types of functionally important producers, such as lichens, have rarely been considered. To address how physiological traits of lichens drive community composition of invertebrates, we collected thalli from 27 lichen species from southern Norway and quantified the communities of associated springtails, mites, and nematodes. For each lichen species, we measured key physiological thallus traits and determined whether invertebrate communities were correlated with these traits. We also explored whether invertebrate communities differed among lichen groups, categorized according to nitrogen-fixing ability, growth form, and substratum. Lichen traits explained up to 39% of the variation in abundances of major invertebrate groups. For many invertebrate groups, abundance was positively correlated with lichen N and P concentrations, N:P ratio, and the percentage of water content on saturation (WC), but had few relationships with concentrations of carbon-based secondary compounds. Diversity and taxonomic richness of invertebrate groups were sometimes also correlated with lichen N and N:P ratios. Nitrogen-fixing lichens showed higher abundance and diversity of some invertebrate groups than did non-N-fixing lichens. However, this emerged in part because most N-fixing lichens have a foliose growth form that benefits invertebrates, through, improving the microclimate, independently of N concentration. Furthermore, invertebrate communities associated with terricolous lichens were determined more by their close proximity to the soil invertebrate pool than by lichen traits. Overall, our results reveal that differences between lichen species have a large impact on the invertebrate communities that live among the thalli. Different invertebrate groups show contrasting responses to traits that are indicative of thallus quality (nutrient concentrations), and thallus growth form is often an important determinant of the invertebrate community. Given the large diversity of lichen traits and growth forms that occur in many ecosystems, lichen-invertebrate communities may be an important contributor to overall community diversity in boreal forests.


Assuntos
Ecossistema , Invertebrados/classificação , Invertebrados/fisiologia , Líquens/classificação , Líquens/fisiologia , Animais , Noruega , Análise de Componente Principal , Especificidade da Espécie
12.
Phytochemistry ; 94: 91-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23664176

RESUMO

Acetone-extractable carbon based secondary compounds (CBSCs) were quantified in two epiphytic lichens to study possible effects of external factors (season and aspect) on secondary chemistry and to relate defense investments to biomass growth and changes in specific thallus mass (STM). At the end of four separate annual cycles starting in each of the four seasons, the cyanolichen Lobaria scrobiculata and the cephalolichen Lobaria pulmonaria (green algae as the primary photobiont and with localized Nostoc in internal cephalodia) were monitored in their natural forest habitats and after being transplanted at three contrasting aspects in open sites. Season strongly influenced most CBSCs. Medullary CBSCs in both species were twice as high in summer as in winter. Aspect hardly affected major CBSCs, whereas transplantation from forest to clear-cut slightly reduced these compounds. No major CBSCs in any species showed a trade-off with growth rate. Dry matter- as well as thallus area-based medullary CBSC contents increased with STM. The cortical usnic acid strongly increased with growth rate and followed spatial, but not seasonal variations in light exposure. Maximal CBSC levels during seasons with most herbivores is consistent with the hypothesis inferring that herbivory is a major selective force for CBSCs. Lack of trade-off between growth and defence investments suggests that these two processes do not compete for photosynthates.


Assuntos
Carbono/metabolismo , Clorófitas/metabolismo , Cianobactérias/metabolismo , Líquens/metabolismo , Estações do Ano , Benzofuranos/metabolismo , Biomassa , Carbono/química , Clorófitas/crescimento & desenvolvimento , Clorófitas/efeitos da radiação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/efeitos da radiação , Ecossistema , Líquens/crescimento & desenvolvimento , Líquens/efeitos da radiação , Luz , Árvores/microbiologia
13.
PLoS One ; 7(11): e49081, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145078

RESUMO

In the long-term absence of major disturbances ecosystems enter a state of retrogression, which involves declining soil fertility and consequently a reduction in decomposition rates. Recent studies have looked at how plant traits such as specific leaf mass and amounts of secondary compounds respond to declining soil fertility during retrogression, but there are no comparable studies for lichen traits despite increasing recognition of the role that lichens can play in ecosystem processes. We studied a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. We used this system to explore how specific thallus mass (STM) and carbon based secondary compounds (CBSCs) change in three common epiphytic lichen species (Hypogymnia phsyodes, Melanohalea olivacea and Parmelia sulcata) as soil fertility declines during this retrogression. We found that STMs of lichens increased sharply during retrogression, and for all species soil N to P ratio (which increased during retrogression) was a strong predictor of STM. When expressed per unit area, medullary CBSCs in all species and cortical CBSCs in P. sulcata increased during retrogression. Meanwhile, when expressed per unit mass, only cortical CBSCs in H. physodes responded to retrogression, and in the opposite direction. Given that lichen functional traits are likely to be important in driving ecological processes that drive nutrient and carbon cycling in the way that plant functional traits are, the changes that they undergo during retrogression could potentially be significant for the functioning of the ecosystem.


Assuntos
Ecossistema , Líquens , Folhas de Planta , Plantas , Ciclo do Carbono , Incêndios , Folhas de Planta/química , Folhas de Planta/fisiologia , Solo/química , Suécia , Árvores
14.
Ecology ; 91(10): 3100-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058569

RESUMO

The optimal defense theory (ODT) deals with defensive compounds improving fitness of a particular organism. It predicts that these compounds are allocated in proportion to the risk for a specific plant tissue being attacked and this tissue's value for plant fitness. As the benefit of defense cannot easily be measured in plants, the empirical evidence for ODT is limited. However, lichens are unique in the sense that their carbon-based secondary compounds can nondestructively be removed or reduced in concentration by acetone rinsing. By using such an extraction protocol, which is lethal to plants, we have tested the ODT by studying lichens instead of plants as photosynthetically active organisms. Prior to acetone rinsing, we found five times higher concentration of meta-scrobiculin in the reproductive parts (soralia) of Lobaria scrobiculata compared to somatic parts of this foliose epiphytic lichen species. At this stage, the lichen-feeding snail Cochlodina laminata avoided the soralia. However, after removal of secondary compounds, the snail instead preferred the soralia. In this way, we have successfully shown that grazing pattern inversely reflects the partitioning of the secondary compounds that have a documented deterring effect. Thus our study provides strong and novel evidence for the ODT.


Assuntos
Depsídeos/metabolismo , Comportamento Alimentar/fisiologia , Líquens/metabolismo , Caramujos/fisiologia , Animais , Depsídeos/química , Líquens/química
15.
Oecologia ; 155(1): 93-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17985157

RESUMO

THIS STUDY AIMS: (1) to quantify mollusc grazing on juvenile and mature thalli of the foliose epiphytic lichen Lobaria pulmonaria, and (2) to test the hypothesis inferring a herbivore defensive role of lichen depsidones in forests with indigenous populations of lichen-feeding molluscs. Lichens were transplanted in shaded and less shaded positions in each of two calcareous broadleaved deciduous forests, one poor in lichens, one with a rich Lobarion community. Preventing the access of molluscs significantly reduced the loss of juvenile L. pulmonaria, particularly in the naturally lichen-poor forest. Molluscs also severely grazed mature thalli in the lichen-poor forest, especially thalli placed under the more shading canopies. Furthermore, reducing the natural concentration of depsidones by pre-rinsing with acetone increased subsequent grazing significantly, showing that lichen depsidones function as herbivore defence in natural habitats. Our results suggest that mollusc grazing may play important roles in shaping the epiphytic vegetation in calcareous deciduous forests, and that recently established juvenile L. pulmonaria thalli seem to be particularly vulnerable.


Assuntos
Comportamento Alimentar , Líquens/crescimento & desenvolvimento , Moluscos/crescimento & desenvolvimento , Árvores/parasitologia , Animais , Folhas de Planta , Salix/parasitologia , Estações do Ano
16.
J Chem Ecol ; 33(8): 1607-18, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17636451

RESUMO

Three epiphytic old forest lichens (Usnea longissima, Pseudocyphellaria crocata, and Lobaria pulmonaria) were transplanted along a natural shade-sun gradient comprising three successional stages in boreal spruce forests (dense young forest, open old forest, and clear-cut) for one summer. After harvest, extractable secondary compounds were analyzed by high-performance liquid chromatography, and the brown pigmentation in melanic species was quantified by reflectance measurements. Cortical compounds in all species increased from shady young forests to exposed clear-cuts. Usnic acid, the major cortical, secondary compound in U. longissima, showed consistently higher concentration in the clear-cut than in the two forested stands. Pseudocyphellaria crocata and L. pulmonaria, lacking extractable secondary compounds in the cortex, significantly increased their amounts of cortical melanins in well-lit stands. The medullary compounds showed more complex responses. Many were not influenced by environmental conditions during the transplantation, whereas the majority of those that responded showed the lowest concentration in clear-cut transplants. Only a few medullary compounds showed the highest concentration in the clear-cut, and at a low level of significance. The synthesis of UV-B-absorbing usnic acid and melanins seems to be part of an acclimation to increased light exposure. The medullary compounds in studied species barely function as solar screens despite their strong UV-B absorbance.


Assuntos
Líquens/química , Árvores , Cromatografia Líquida de Alta Pressão , Líquens/classificação , Pigmentação , Especificidade da Espécie , Raios Ultravioleta
17.
Acta Derm Venereol ; 82(5): 329-34, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12430730

RESUMO

Glycosaminoglycans are important components of all extracellular matrices. One of the glycosaminoglycans is hyaluronan, which is ubiquitously distributed throughout the connective tissue. Hyaluronan is especially abundant in the skin, in which it is of both structural and functional importance. This study describes the localization and distribution of hyaluronan in the skin of healthy individuals and of 23 patients with insulin-dependent diabetes mellitus and various degrees of limited joint mobility. In normal skin, hyaluronan staining was seen in all layers but most prominently in the papillary dermis and the basement membrane zone. In the skin from diabetic patients with normal or only moderately restricted mobility of the hands (limited joint mobility grades 0 and 1), the distribution of hyaluronan was similar to that of normal skin. In the skin of patients with severe restriction in joint mobility (limited joint mobility grade 2) the staining pattern was significantly different with weak hyaluronan staining in the papillary dermis and the basement membrane zone almost devoid of hyaluronan. Moreover, an increased epidermal thickness in the latter patients was evident as well as a pronounced hyaluronan staining compared with normal epidermis.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Epiderme/metabolismo , Epiderme/patologia , Ácido Hialurônico/metabolismo , Artropatias/metabolismo , Adulto , Biópsia por Agulha , Estudos de Casos e Controles , Técnicas de Cultura , Feminino , Mãos/fisiopatologia , Humanos , Ácido Hialurônico/análise , Imuno-Histoquímica , Artropatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Probabilidade , Amplitude de Movimento Articular/fisiologia , Valores de Referência , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Fenômenos Fisiológicos da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...