Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375853

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.

2.
Int J Mol Cell Med ; 12(2): 120-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313376

RESUMO

The combination of chemotherapy drugs with angiogenesis inhibitors improves response and survival and reduces the cytotoxic side effects and drug resistance in patients compared to chemotherapy alone. Here, we investigated the efficacy of the concomitant administration of doxorubicin and a peptide derived from the N-terminal domain of Endostatin (called ES-SS) in the 4T1 mammary carcinoma tumor model. Tumor-bearing mice were divided into the control and three treatment groups, including ES-SS, doxorubicin, and the combination. Injections were performed daily for two weeks and tumor volumes were measured during the treatment. Immunohistochemical analysis of Ki-67, CD31, CD34, Bcl-2, p53 expression, and TUNEL assay were performed on tumor tissues at the end of treatment. Besides, molecular dynamics and docking simulations were performed. It was demonstrated that tumor growth was inhibited in mice treated with peptide plus doxorubicin more significantly than in each treatment alone (P<0.05). No weight loss or adverse effects were observed. Moreover, combination therapy was more effective in tumor angiogenesis suppression and apoptosis stimulation (P<0.05). Docking simulations by ClusPro server demonstrated that ES-SS binds to integrin α5ß1, Transglu-taminase 2, and Matrix metalloproteinase 2 with more negative binding energy and hydrogen bonds compared to the native peptide. Generally, we proposed that ES-SS can augment the therapeutic efficacy of doxorubicin through angiogenesis prevention and apoptosis induction in breast tumor. Owing to the advantages of peptides to recombinant proteins or monoclonal antibodies, further preclinical and clinical evaluations of this combination strategy are worth taking into consideration.

3.
Biochem J ; 479(12): 1285-1302, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35638868

RESUMO

Fibroblast Growth Factor/FGF Receptor 1 (FGF2/FGFR1) system regulates the growth and metastasis of different cancers. Inhibition of this signaling pathway is an attractive target for cancer therapy. Here, we aimed to reproduce the 118-126 fragment of FGF2 to interfere with the FGF2-FGFR1 interaction. To determine whether the loop structure affects the function of this fragment, we compared cyclic (disulfide-bonded) and linear peptide variants. The cyclic peptide (referred to as BGF1) effectively inhibited the FGF2-induced proliferation of HUVECs, 4T1 mammary carcinoma, U87 glioblastoma, and SKOV3 ovarian carcinoma cells. It led to apoptosis induction in HUVECs, whereas the linear peptide (referred to as BGF2) was ineffective. In a murine 4T1 tumor model, BGF1 inhibited tumor growth more effectively than Avastin and increased animals' survival without causing weight loss, but the linear peptide BGF2 had no significant anti-tumor effects. According to immunohistochemical studies, the anti-tumor properties of BGF1 were associated with suppression of tumor cell proliferation (Ki-67 expression), angiogenesis (CD31 expression), and apoptosis induction (as was shown by increased p53 expression and TUNEL staining and decreased Bcl-2 expression). The potential of BGF1 to suppress tumor invasion was indicated by quantitative analysis of the metastasis-related proteins, including FGFR1, pFGFR1, NF-κB, p-NF-κB, MMP-9, E-cadherin, N-cadherin, and Vimentin, and supported by small animal positron emission tomography (PET) used 18Fluorodeoxyglucose (18F-FDG). These results demonstrate that the functional properties of the 118-126 region of FGF2 depend on the loop structure and the peptide derived from this fragment encourages further preclinical investigations.


Assuntos
Neoplasias da Mama , Fator 2 de Crescimento de Fibroblastos , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , NF-kappa B , Peptídeos/farmacologia
4.
Iran J Biotechnol ; 18(4): e2553, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34056022

RESUMO

BACKGROUND: Development of VEGF antagonists, which inhibit its interaction with the receptors, is a widely used strategy for the inhibition of angiogenesis and tumor growth. OBJECTIVES: In the present study, a VEGFR-1 antagonistic peptide was designed and its potential for binding to VEGFR-1 and VEGFR-2 was evaluated by theoretical studies. MATERIALS AND METHODS: Based on the X-ray structure of VEGF-B/VEGFR-1 D2 (PDB ID: 2XAC), an antagonistic peptide (known as VGB1) was designed, and its model structure was constructed using homology modeling in the MODELLER, version 9.16. The validity of the modeled structures was estimated employing several web tools. Finally, one model was chosen and molecular dynamics (MD) simulation was applied using the GROMACS package, version 5.1.4, to allow conformational relaxation of the structure. Next, docking process of the peptide with VEGFR-1 and VEGFR-2 was performed by HADDOCK web server and the docking structures were optimized by MD simulation for 20 ns. The far-UV circular dichroism (CD) spectrum of VGB1 was recorded to evaluate the overall structure of the peptide. RESULTS: The far-UV CD spectrum indicated that VGB1 contains α helix structure. The results from docking studies suggested that Van der Waals and nonpolar interactions play the most important role in the peptide binding to VEGFR-1. In addition, our results implicated the relevance of both Van der Waals and electrostatic interactions in the formation of complex between VGB1 and VEGFR-2. In addition to the common binding residues in the corresponding region of VEGF-A and VEGF-B, additional binding residues also were predicted for the interaction of VGB1 with VEGFR-1 and VEGFR-2. CONCLUSIONS: The results of MD and molecular docking simulations predicted that VGB1 recognizes both VEGFR-1 and VEGFR-2, which may lead to the prevention of the downstream signaling triggered by these receptors.

5.
Biochem J ; 476(4): 645-663, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30700502

RESUMO

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are pivotal regulators of angiogenesis. The VEGF-VEGFR system is therefore an important target of anti-angiogenesis therapy. Based on the X-ray structure of VEGF-B/VEGFR-1 D2, we designed a cyclic peptide (known as VGB1) reproducing the α1 helix and its adjacent region to interfere with signaling through VEGFR-1. Unexpectedly, VGB1 bound VEGFR-2 in addition to VEGFR-1, leading to inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells and 4T1 murine mammary carcinoma cells, which express VGEFR-1 and VEGFR-2, and U87 glioblastoma cells that mostly express VEGFR-2. VGB1 inhibited different aspects of angiogenesis, including proliferation, migration and tube formation of endothelial cells stimulated by VEGF-A through suppression of extracellular signal-regulated kinase 1/2 and AKT (Protein Kinase B) phosphorylation. In a murine 4T1 mammary carcinoma model, VGB1 caused regression of tumors without causing weight loss in association with impaired cell proliferation (decreased Ki67 expression) and angiogenesis (decreased CD31 and CD34 expression), and apoptosis induction (increased TUNEL staining and p53 expression, and decreased Bcl-2 expression). According to far-UV circular dichroism (CD) and molecular dynamic simulation data, VGB1 can adopt a helical structure. These results, for the first time, demonstrate that α1 helix region of VEGF-B recognizes both VEGFR-1 and VEGFR-2.


Assuntos
Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos , Fator B de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estrutura Secundária de Proteína , Fator B de Crescimento do Endotélio Vascular/química , Fator B de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/agonistas , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...