Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Int ; 181: 108222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948865

RESUMO

The recent United Kingdom (UK) Environment Act consultation had the intention of setting two targets for PM2.5 (particles with an aerodynamic diameter less than 2.5 µm), one related to meeting an annual average concentration and the second to reducing population exposure. As part of the consultation, predictions of PM2.5 concentrations in 2030 were made by combining European Union (EU) and UK government's emissions forecasts, with the Climate Change Committee's (CCC) Net Zero vehicle forecasts, and in London with the addition of local policies based on the London Environment Strategy (LES). Predictions in 2018 showed 6.4% of the UK's area and 82.6% of London's area had PM2.5 concentrations above the World Health Organization (WHO) interim target of 10 µg m-3, but by 2030, over 99% of the UK's area was predicted to be below it. However, kerbside concentrations in London and other major cities were still at risk of exceeding 10 µg m-3. With local action on PM2.5 in London, population weighted concentrations showed full compliance with the WHO interim target of 10 µg m-3 in 2030. However, predicting future PM2.5 concentrations and interpreting the results will always be difficult and uncertain for many reasons, such as imperfect models and the difficulty in estimating future emissions. To help understand the sensitivity of the model's PM2.5 predictions in 2030, current uncertainty was quantified using PM2.5 measurements and showed large areas in the UK that were still at risk of exceeding the WHO interim target despite the model predictions being below 10 µg m-3. Our results do however point to the benefits that policy at EU, UK and city level can have on achieving the WHO interim target of 10 µg m-3. These results were submitted to the UK Environment Act consultation. Nevertheless, the issues addressed here could be applicable to other European cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Cidades , Reino Unido , Monitoramento Ambiental/métodos
2.
Environ Monit Assess ; 194(4): 322, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357591

RESUMO

Visibility and aerosol optical depth (AOD) characterization, and their relationship with PM10 and local and synoptic meteorology, were studied for January-March in 2014 and 2015 over Bangkok. Visibility degradation intensifies in the dry season as compared to the wet season due to increase in PM10 and unfavorable meteorological conditions. The average visibility is lower in January and February as compared to the other months. Relatively higher AOD in March despite lower PM10 is attributed to the synergetic effect of moderate relative humidity, secondary aerosols, elevated aerosol layer due to summertime convection, and biomass burning. Larger variability in visibility and PM10 in winter months is due to more synoptic weather fluctuations while AOD shows similar variability for all months attributed partly to fires. Higher PM10 and moderate-to-high relative humidity cause lower visibility in the morning while it improves in afternoon as PM10 and relative humidity decrease. AOD is higher in the afternoon as compared to that in the morning and evening as it is less sensitive to diurnal change in aerosols and meteorology at the surface level. Visibility and AOD relationships with PM10 are dependent on relative humidity. Weaker winds lead to lower visibility, higher PM10, and higher AOD irrespective of wind direction. Stronger winds improve visibility and decrease PM10 for all directions while AOD is higher for all directions except eastern and northeastern. The back-trajectory results show that the transport of pollutant and moist air is coupled with the synoptic weather and influence visibility and AOD. Two low-visibility events were investigated. The first event is potentially caused by the combined effect of local emissions and their accumulation due to stagnant weather conditions, secondary aerosols, and forest fires in the nearby regions. The second event can be attributed to the local emission and fires in the nearby area with hygroscopic growth of aerosols due to moist air from the Gulf of Thailand. Based on these findings, some policy implications have also been given.


Assuntos
Monitoramento Ambiental , Tempo (Meteorologia) , Aerossóis/análise , Monitoramento Ambiental/métodos , Estações do Ano , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...