Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
JBMR Plus ; 7(9): e10783, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701153

RESUMO

We have an operant model of reaching and grasping in which detrimental bone remodeling is observed rather than beneficial adaptation when rats perform a high-repetition, high-force (HRHF) task long term. Here, adult female Sprague-Dawley rats performed an intense HRHF task for 18 weeks, which we have shown induces radial trabecular bone osteopenia. One cohort was euthanized at this point (to assay the bone changes post task; HRHF-Untreated). Two other cohorts were placed on 6 weeks of rest while being simultaneously treated with either an anti-CCN2 (FG-3019, 40 mg/kg body weight, ip; twice per week; HRHF-Rest/anti-CCN2), or a control IgG (HRHF-Rest/IgG), with the purpose of determining which might improve the trabecular bone decline. Results were compared with food-restricted control rats (FRC). MicroCT analysis of distal metaphysis of radii showed decreased trabecular bone volume fraction (BV/TV) and thickness in HRHF-Untreated rats compared with FRCs; responses improved with HRHF-Rest/anti-CCN2. Rest/IgG also improved trabecular thickness but not BV/TV. Histomorphometry showed that rest with either treatment improved osteoid volume and task-induced increases in osteoclasts. Only the HRHF-Rest/anti-CCN2 treatment improved osteoblast numbers, osteoid width, mineralization, and bone formation rate compared with HRHF-Untreated rats (as well as the latter three attributes compared with HRHF-Rest/IgG rats). Serum ELISA results were in support, showing increased osteocalcin and decreased CTX-1 in HRHF-Rest/anti-CCN2 rats compared with both HRHF-Untreated and HRHF-Rest/IgG rats. These results are highly encouraging for use of anti-CCN2 for therapeutic treatment of bone loss, such as that induced by chronic overuse. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743030

RESUMO

The effectiveness of manual therapy in reducing the catabolic effects of performing repetitive intensive force tasks on bones has not been reported. We examined if manual therapy could reduce radial bone microstructural declines in adult female Sprague-Dawley rats performing a 12-week high-repetition and high-force task, with or without simultaneous manual therapy to forelimbs. Additional rats were provided 6 weeks of rest after task cessation, with or without manual therapy. The control rats were untreated or received manual therapy for 12 weeks. The untreated TASK rats showed increased catabolic indices in the radius (decreased trabecular bone volume and numbers, increased osteoclasts in these trabeculae, and mid-diaphyseal cortical bone thinning) and increased serum CTX-1, TNF-α, and muscle macrophages. In contrast, the TASK rats receiving manual therapy showed increased radial bone anabolism (increased trabecular bone volume and osteoblast numbers, decreased osteoclast numbers, and increased mid-diaphyseal total area and periosteal perimeter) and increased serum TNF-α and muscle macrophages. Rest, with or without manual therapy, improved the trabecular thickness and mid-diaphyseal cortical bone attributes but not the mineral density. Thus, preventive manual therapy reduced the net radial bone catabolism by increasing osteogenesis, while rest, with or without manual therapy, was less effective.


Assuntos
Transtornos Traumáticos Cumulativos , Manipulações Musculoesqueléticas , Animais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Transtornos Traumáticos Cumulativos/prevenção & controle , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
3.
J Orthop Res ; 37(9): 2004-2018, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31041999

RESUMO

Fibrosis may be a key factor in sensorimotor dysfunction in patients with chronic overuse-induced musculoskeletal disorders. Using a clinically relevant rodent model, in which performance of a high demand handle-pulling task induces tissue fibrosis and sensorimotor declines, we pharmacologically blocked cellular communication network factor 2 (CCN2; connective tissue growth factor) with the goal of reducing the progression of these changes. Young adult, female Sprague-Dawley rats were shaped to learn to pull at high force levels (10 min/day, 5 weeks), before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated, or treated in task weeks 2 and 3 with a monoclonal antibody that blocks CCN2 (FG-3019), or a control immunoglobulin G (IgG). Control rats were untreated or received FG-3019, IgG, or vehicle (saline) injections. Mean task reach rate and grasp force were higher in 3-week HRHF + FG-3019 rats, compared with untreated HRHF rats. Grip strength declined while forepaw mechanical sensitivity increased in untreated HRHF rats, compared with controls; changes improved by FG-3019 treatment. The HRHF task increased collagen in multiple tissues (flexor digitorum muscles, nerves, and forepaw dermis), which was reduced with FG-3019 treatment. FG-3019 treatment also reduced HRHF-induced increases in CCN2 and transforming growth factor ß in muscles. In tendons, FG-3019 reduced HRHF-induced increases in CCN2, epitendon thickening, and cell proliferation. Our findings indicate that CCN2 is critical to the progression of chronic overuse-induced multi-tissue fibrosis and functional declines. FG-3019 treatment may be a novel therapeutic strategy for overuse-induced musculoskeletal disorders. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2004-2018, 2019.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Transtornos Traumáticos Cumulativos/etiologia , Transtornos Neurológicos da Marcha/prevenção & controle , Animais , Doença Crônica , Colágeno/análise , Fator de Crescimento do Tecido Conjuntivo/análise , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Transtornos Traumáticos Cumulativos/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Fibrose , Força da Mão , Inflamação/etiologia , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/análise
4.
Bone ; 110: 267-283, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476978

RESUMO

We have an operant rat model of upper extremity reaching and grasping in which we examined the impact of performing a high force high repetition (High-ForceHR) versus a low force low repetition (Low-ForceHR) task for 18weeks on the radius and ulna, compared to age-matched controls. High-ForceHR rats performed at 4 reaches/min and 50% of their maximum voluntary pulling force for 2h/day, 3days/week. Low-ForceHR rats performed at 6% maximum voluntary pulling force. High-ForceHR rats showed decreased trabecular bone volume in the distal metaphyseal radius, decreased anabolic indices in this same bone region (e.g., decreased osteoblasts and bone formation rate), and increased catabolic indices (e.g., microcracks, increased osteocyte apoptosis, secreted sclerostin, RANKL, and osteoclast numbers), compared to controls. Distal metaphyseal trabeculae in the ulna of High-ForceHR rats showed a non-significant decrease in bone volume, some catabolic indices (e.g., decreased trabecular numbers) yet also some anabolic indices (e.g., increased osteoblasts and trabecular thickness). In contrast, the mid-diaphyseal region of High-ForceHR rats' radial and ulnar bones showed few to no microarchitecture differences and no changes in apoptosis, sclerostin or RANKL levels, compared to controls. In further contrast, Low-ForceHR rats showed increased trabecular bone volume in the radius in the distal metaphysis and increased cortical bone area its mid-diaphysis. These changes were accompanied by increased anabolic indices, no microcracks or osteocyte apoptosis, and decreased RANKL in each region, compared to controls. Ulnar bones of Low-ForceHR rats also showed increased anabolic indices, although fewer than in the adjacent radius. Thus, prolonged performance of an upper extremity reaching and grasping task is loading-, region-, and bone-dependent, with high force loads at high repetition rates inducing region-specific increases in bone degradative changes that were most prominent in distal radial trabeculae, while low force task loads at high repetition rates induced adaptive bone responses.


Assuntos
Osso Esponjoso/patologia , Osteócitos/citologia , Animais , Apoptose/fisiologia , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Feminino , Marcadores Genéticos/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Osteócitos/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
5.
Proc Inst Mech Eng H ; 231(4): 326-336, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28332448

RESUMO

Understanding the mechanical behavior of aorta under supra-physiological loadings is an important aspect of modeling tissue behavior in various applications that involve large deformations. Utilizing inflation-extension experiments, the mechanical behavior of porcine descending thoracic aortic segments under physiological and supra-physiological intraluminal pressures was investigated. The pressure was changed in the range of 0-70 kPa and the deformation of the segment was determined in three dimensions using a custom-made motion capture system. An orthotropic Fung-type constitutive model was characterized by implementing a novel computationally efficient framework that ensured material stability for numerical simulations. The nonlinear rising trend of circumferential stretch ratio [Formula: see text] from outer toward inner wall was significantly increased at higher pressures. The increase in [Formula: see text] from physiological pressure (13 kPa) to 70 kPa was 13% at the outer wall and 22% at the inner wall; in this pressure range, the longitudinal stretch ratio [Formula: see text] increased 20%. A significant nonlinearity in the material behavior was observed as in the same pressure range, and the circumferential and longitudinal Cauchy stresses at the inner wall were increased 16 and 18 times, respectively. The overall constitutive model was verified in several loading paths in the [Formula: see text] space to confirm its applicability in multi-axial loading conditions.


Assuntos
Aorta Torácica/fisiologia , Pressão , Animais , Fenômenos Biomecânicos , Teste de Materiais , Suínos , Suporte de Carga
6.
J Headache Pain ; 18(1): 16, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28176234

RESUMO

BACKGROUND: Frequent mild head injuries or concussion along with the presence of headache may contribute to the persistence of concussion symptoms. METHODS: In this study, the acute effects of recovery between mild head injuries and the frequency of injuries on a headache behavior, trigeminal allodynia, was assessed using von Frey testing up to one week after injury, while histopathological changes in the trigeminal pain pathway were evaluated using western blot, ELISA and immunohistochemistry.  RESULTS: A decreased recovery time combined with an increased mild closed head injury (CHI) frequency results in reduced trigeminal allodynia thresholds compared to controls. The repetitive CHI group with the highest injury frequency showed the greatest reduction in trigeminal thresholds along with greatest increased levels of calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis. Repetitive CHI resulted in astrogliosis in the central trigeminal system, increased GFAP protein levels in the sensory barrel cortex, and an increased number of microglia cells in the trigeminal nucleus caudalis. CONCLUSIONS: Headache behavior in rats is dependent on the injury frequency and recovery interval between mild head injuries. A worsening of headache behavior after repetitive mild head injuries was concomitant with increases in CGRP levels, the presence of astrocytosis, and microglia proliferation in the central trigeminal pathway. Signaling between neurons and proliferating microglia in the trigeminal pain system may contribute to the initiation of acute headache after concussion or other traumatic brain injuries.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Traumatismos Craniocerebrais/complicações , Gliose/etiologia , Cefaleia/etiologia , Hiperalgesia/etiologia , Microglia/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Doenças do Nervo Trigêmeo/etiologia , Animais , Modelos Animais de Doenças , Cefaleia/metabolismo , Hiperalgesia/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Doenças do Nervo Trigêmeo/metabolismo
7.
J Mech Behav Biomed Mater ; 69: 50-56, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28040607

RESUMO

This study investigates the inhomogeneity and anisotropy of porcine descending thoracic aorta in three dimensions using a custom-made nano-indentation technique and a quasi-linear viscoelastic modeling approach. The indentation tests were conducted in axial, circumferential, and radial orientations with about 100 µm spatial resolution. The ratio of the elastic moduli obtained in different orientations was used to quantify the tissue local anisotropy. The distal sections were generally stiffer than the proximal ones in both axial and circumferential indentations. Four distinct layers were identified across the thickness with significantly different mechanical properties. The stiffness of the medial quadrant was significantly lower than all other quadrants in axial indentation. The anisotropic behavior of the tissue was more pronounced in the lateral quadrant of the distal sections. The results of this study can be used to better understand the mechanisms of aorta deformation and improve the spatial accuracy of computational models of aorta.


Assuntos
Anisotropia , Aorta Torácica/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Suínos
8.
JAMA Ophthalmol ; 134(7): 763-9, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27257799

RESUMO

IMPORTANCE: An increased understanding of the relationship between subconcussive head impacts and near point of convergence (NPC) ocular-motor function may be useful in delineating traumatic brain injury. OBJECTIVE: To investigate whether repetitive subconcussive head impacts during preseason football practice cause changes in NPC. DESIGN, SETTING, AND PARTICIPANTS: This prospective, observational study of 29 National Collegiate Athletic Association Division I football players included baseline and preseason practices (1 noncontact and 4 contact), and postseason follow-up and outcome measures were obtained for each time. An accelerometer-embedded mouthguard measured head impact kinematics. Based on the sum of head impacts from all 5 practices, players were categorized into lower (n = 7) or higher (n = 22) impact groups. EXPOSURES: Players participated in regular practices, and all head impacts greater than 10g from the 5 practices were recorded using the i1Biometerics Vector mouthguard (i1 Biometrics Inc). MAIN OUTCOMES AND MEASURES: Near point of convergence measures and symptom scores. RESULTS: A total of 1193 head impacts were recorded from 5 training camp practices in the 29 collegiate football players; 22 were categorized into the higher-impact group and 7 into the lower-impact group. There were significant differences in head impact kinematics between lower- and higher-impact groups (number of impacts, 6 vs 41 [lower impact minus higher impact = 35; 95% CI, 21-51; P < .001]; linear acceleration, 99g vs 1112g [lower impact minus higher impact= 1013; 95% CI, 621 - 1578; P < .001]; angular acceleration, 7589 radian/s2 vs 65 016 radian/s2 [lower impact minus higher impact= 57 427; 95% CI , 31 123-80 498; P < .001], respectively). The trajectory and cumulative burden of subconcussive impacts on NPC differed by group (F for group × linear trend1, 238 = 12.14, P < .001 and F for group × quadratic trend1, 238 = 12.97, P < .001). In the higher-impact group, there was a linear increase in NPC over time (B for linear trend, unstandardized coefficient [SE]: 0.76 [0.12], P < .001) that plateaued and resolved by postseason follow-up (B for quadratic trend [SE]: -0.06 [0.008], P < .001). In the lower-impact group, there was no change in NPC over time. Group differences were first observed after the first contact practice and remained until the final full-gear practice. No group differences were observed postseason follow-up. There were no differences in symptom scores between groups over time. CONCLUSIONS AND RELEVANCE: Although asymptomatic, these data suggest that repetitive subconcussive head impacts were associated with changes in NPC. The increase in NPC highlights the vulnerability and slow recovery of the ocular-motor system following subconcussive head impacts. Changes in NPC may become a useful clinical tool in deciphering brain injury severity.


Assuntos
Traumatismos em Atletas/etiologia , Concussão Encefálica/etiologia , Convergência Ocular , Futebol Americano/lesões , Transtornos da Motilidade Ocular/etiologia , Aceleração , Traumatismos em Atletas/fisiopatologia , Fenômenos Biomecânicos , Concussão Encefálica/fisiopatologia , Dispositivos de Proteção da Cabeça , Humanos , Masculino , Transtornos da Motilidade Ocular/fisiopatologia , Estudos Prospectivos , Telemetria , Universidades , Adulto Jovem
9.
J Mech Behav Biomed Mater ; 47: 12-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837340

RESUMO

Determination of correlations between transmural mechanical and morphological properties of aorta would provide a quantitative baseline for assessment of preventive and therapeutic strategies for aortic injuries and diseases. A multimodal and multidisciplinary approach was adopted to characterize the transmural morphological properties of descending porcine aorta. Histology and multi-photon microscopy were used for describing the media layer micro-architecture in the circumferential-radial plane, and Fourier Transform infrared imaging spectroscopy was utilized for determining structural protein, and total protein content. The distributions of these quantified properties across the media thickness were characterized and their relationship with the mechanical properties from a previous study was determined. Our findings indicate that there is an increasing trend in the instantaneous Young׳s modulus (E), elastic lamella density (ELD), structural protein (SPR), total protein (TPR), and elastin and collagen circumferential percentage (ECP and CCP) from the inner towards the outer layers. Two regions with equal thickness (inner and outer halves) were determined with significantly different morphological and material properties. The results of this study represent a substantial step toward anatomical characterization of the aortic wall building blocks and establishment of a foundation for quantifying the role of microstructural components on the functionality of aorta.


Assuntos
Aorta Torácica/citologia , Fenômenos Mecânicos , Suínos , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Matriz Extracelular/metabolismo , Teste de Materiais , Nanotecnologia
10.
Biomech Model Mechanobiol ; 14(3): 459-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25205088

RESUMO

In the present study, numerical simulations of nonlinear wave propagation and shock formation in brain tissue have been presented and a new mechanism of injury for blast-induced neurotrauma (BINT) is proposed. A quasilinear viscoelastic (QLV) constitutive material model was used that encompasses the nonlinearity as well as the rate dependence of the tissue relevant to BINT modeling. A one-dimensional model was implemented using the discontinuous Galerkin finite element method and studied with displacement- and pressure-input boundary conditions. The model was validated against LS-DYNA finite element code and theoretical results for specific conditions that resulted in shock wave formation. It was shown that a continuous wave can become a shock wave as it propagates in the QLV brain tissue when the initial changes in acceleration are beyond a certain limit. The high spatial gradient of stress and strain at the shock front cause large relative motions at the cellular scale at high temporal rates even when the maximum stresses and strains are relatively low. This gradient-induced local deformation may occur away from the boundary and is proposed as a contributing factor to the diffuse nature of BINT.


Assuntos
Traumatismos por Explosões/fisiopatologia , Encéfalo/fisiopatologia , Simulação por Computador , Análise de Elementos Finitos , Humanos
11.
Injury ; 44(10): 1340-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23672795

RESUMO

OBJECTIVE: Biomechanical comparison between locked plating and retrograde nailing of supracondylar femur fractures with simulated postoperative weight-bearing. METHODS: The Locking Condylar Plate (LCP) and Retrograde/Antegrade EX Femoral Nail (RAFN) were tested using 10 paired elderly cadaveric femurs, divided into Normal and Low Bone Mineral Density (BMD) groups, with a simulated AO/OTA type 33-A3 supracondylar femur fracture. Each specimen was subjected to 200,000 loading cycles in an attempt to simulate six weeks of postoperative recovery with full weight-bearing for an average individual. The construct's subsidence due to cyclic loading, and axial stiffness before and after the cyclic loading were measured and their correlation with BMD was studied. The two implants were compared in a paired study within each BMD group. RESULTS: LCP constructs showed higher axial stiffness compared to RAFN for both Normal and Low BMD groups (80% and 57%, respectively). After cyclic loading, axial stiffness of both constructs decreased by 20% and RAFN constructs resulted in twice as much subsidence (1.9 ± 0.6mm). Two RAFN constructs with Low BMD failed after a few cycles whereas the matched pairs fixed with LCP failed after 70,000 cycles. CONCLUSIONS: The RAFN constructs experienced greater subsidence and reduced axial stiffness compared to the LCP constructs. In Low BMD specimens, the RAFN constructs had a higher risk of failure.


Assuntos
Pinos Ortopédicos , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Densidade Óssea , Parafusos Ósseos , Cadáver , Feminino , Humanos , Masculino , Estresse Mecânico , Suporte de Carga
12.
Injury ; 43(7): 1159-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22482931

RESUMO

INTRODUCTION: Headless Compression Screws (HCS) are commonly utilized for the fixation of small bone and articular fractures. Recently several new second generation HCS (SG-HCS) have been introduced with the purported benefits of improved biomechanical characteristics. We sought to determine and compare the biomechanical efficiencies of these screws. MATERIAL AND METHODS: Five HCS including four second generation (Mini-Acutrak 2 (Acumed), Twinfix (Stryker), Kompressor Mini (Integra), HCS 3.0 (Synthes)) and one first generation (Herbert-Whipple) were studied. Polyurethane foam blocks that represented osteoporotic cancellous bone (0.16 g/cc) with a simulated transverse fracture at the waist were utilized and five screws of each brand were tested for the generated compression force and fastening torque during insertion with and without pre-drilling. RESULTS: The generated compression force was highest for Mini-Acutrak 2 (45.41 ± 0.88 N) and lowest for Herbert-Whipple (13.44 ± 2.35 N) and forces of Twinfix, Kompressor Mini, HCS 3.0 were in between in descending order. The compression force of SG-HCS increased slightly without pre-drilling but it was not statistically significant while the fastening torque increased significantly. Slight over-fastening beyond the recommended stage significantly reduced the compression force in Twinfix and Kompressor and had no or moderate effect in other screws. CONCLUSION: All SG-HCS demonstrated greater biomechanical characteristics than the first generation Herbert-Whipple screw. The Mini-Acutrak 2 with a variable pitch design generated the maximum compression force and showed the most reliability and sustainability. Screws with independently rotating trailing heads (Twinfix and Kompressor Mini) demonstrated loss of compression with extra turns. The increase of fastening torque due to over-fastening and loss of compression at the same time in some screw designs, demonstrated how the fastening torque (applied by the surgeon) can be a misleading measure of the compression force. Application of SG-HCS in osteoporotic bone without pre-drilling can slightly increase the compression force.


Assuntos
Parafusos Ósseos , Teste de Materiais , Osso Escafoide/cirurgia , Fenômenos Biomecânicos , Força Compressiva , Desenho de Equipamento , Humanos , Modelos Anatômicos , Poliuretanos , Reprodutibilidade dos Testes , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...