Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(4): 041403, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566847

RESUMO

In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively.

2.
Phys Rev Lett ; 129(6): 061104, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018635

RESUMO

We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M_{⊙} and 1.0 M_{⊙} in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q≥0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr^{-1}. This implies an upper limit on the merger rate of subsolar binaries in the range [220-24200] Gpc^{-3} yr^{-1}, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M_{⊙}

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...