Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 89(6): 1947-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21076918

RESUMO

Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC-FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.


Assuntos
Lipase/metabolismo , Metabolismo dos Lipídeos , Óleos de Plantas/metabolismo , Yarrowia/metabolismo , Western Blotting , Cromatografia Gasosa , Cromatografia em Camada Fina , Meios de Cultura/química , Citosol/química , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Azeite de Oliva , Yarrowia/crescimento & desenvolvimento
2.
Org Biomol Chem ; 6(7): 1208-14, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18362960

RESUMO

Indolyl and nitrophenyl 5-O-hydroxycinnamoyl-alpha-L-arabinofuranosides were prepared by chemo-enzymatic syntheses. These probes were designed as substrates to be used in assays of feruloyl esterase activity (EC 3.1.1.77). Color development in the assays only occurs when feruloyl esterase activity releases an intermediate chromogenic arabinoside that is a suitable substrate for alpha-L-arabinofuranosidase (EC 3.2.1.55), which in turn releases the free chromogenic group. The usefulness of these compounds was evaluated in both qualitative solid media-based assays and quantitative liquid assays that can be performed in microtiter plates using feruloyl esterases and arabinofuranosidases from various origins.


Assuntos
Hidrolases de Éster Carboxílico/análise , Hidrolases de Éster Carboxílico/química , Compostos Cromogênicos/química , Compostos Cromogênicos/síntese química , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Nitrofenóis/química
3.
Fungal Genet Biol ; 45(5): 638-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18308593

RESUMO

The breakdown of lignin by fungi is a key step during carbon recycling in terrestrial ecosystems. This process is of great interest for green and white biotechnological applications. Given the importance of these enzymatic processes, we have classified the enzymes potentially involved in lignin catabolism into sequence-based families and integrated them in a newly developed database, designated Fungal Oxidative Lignin enzymes (FOLy). Families were defined after sequence similarity searches starting from protein sequences and validated by the convergence of results with biochemical experiments reported in the literature. The resulting database was applied as a tool for the functional annotation of genomes from different fungi, namely (i) the Basidiomycota Coprinopsis cinerea, Phanerochaete chrysosporium and Ustilago maydis and (ii) the Ascomycota Aspergillus nidulans and Trichoderma reesei. Genomic comparison of the oxidoreductases of these fungi revealed significant differences in the putative enzyme arsenals. Two Ascomycota fungal genomes were annotated and new candidate genes were identified that could be useful for lignin degradation and (or) melanin synthesis, and their function investigated experimentally. This database efforts aims at providing the means to get new insights for the understanding and biotechnological exploitation of the lignin degradation. A WWW server giving access to the routinely updated FOLy classifications of enzymes potentially involved in lignin degradation can be found at http://foly.esil.univ-mrs.fr.


Assuntos
Bases de Dados de Proteínas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Lignina/metabolismo , Oxirredutases/classificação , Oxirredutases/metabolismo , Proteínas Fúngicas/genética , Oxirredutases/genética , Homologia de Sequência de Aminoácidos
4.
Appl Environ Microbiol ; 73(17): 5624-32, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17630312

RESUMO

The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.


Assuntos
Aspergillus niger/enzimologia , Biotecnologia/métodos , Ácido Clorogênico/metabolismo , Hidrolases/genética , Regulação para Cima , Sequência de Aminoácidos , Aspergillus niger/genética , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Transformação Genética
6.
Can J Microbiol ; 52(9): 886-92, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17110981

RESUMO

The ability of members of Aspergillus sections Nigri, Flavi, and Terrei to produce feruloyl esterases was studied according to their substrate specificity against synthetic methyl esters of hydroxycinnamic acids. Type A feruloyl esterases (FAEA), induced during growth on cereal-derived products, show a preference for the phenolic moiety of substrates that contain methoxy substitutions, as found in methyl sinapinate, whereas type B feruloyl esterases (FAEB) show a preference for the phenolic moiety of substrates that contain hydroxyl substitutions, as occurs in methyl caffeate. All the strains of Aspergillus section Nigri (e.g., A. niger and A. foetidus) were able to produce feruloyl esterases with activity profiles similar to those reported for FAEA and FAEB of A. niger when grown on oat-spelt xylan and sugar beet pulp, respectively. The two genes encoding these proteins, faeA and faeB, were identified by Southern blot analysis. The strains of Aspergillus sections Flavi (e.g., A. flavus, A. flavo-furcatus, and A. tamarii) and Terrei (e.g., A. terreus) were able to produce type A and type B enzymes. faeA was revealed in genomic DNA of these strains, and FAEA was determined by immunodetection in cultures grown in oat-spelt xylan. In addition, type B enzymes, not related to faeB, were efficiently induced by oat-spelt xylan and exhibited very original activity profiles on sugar beet pulp. This work confirms that the members of the genus Aspergillus are good feruloyl esterase producers.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Aspergillus/classificação , Aspergillus/genética , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aspergillus niger/enzimologia , Aspergillus niger/genética , Aspergillus niger/metabolismo , Southern Blotting , Western Blotting , Hidrolases de Éster Carboxílico/genética , Meios de Cultivo Condicionados/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Fatores de Tempo
7.
BMC Evol Biol ; 6: 92, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17092334

RESUMO

BACKGROUND: There have been many claims of adaptive molecular evolution, but what role does positive selection play in functional divergence? The aim of this study was to test the relationship between evolutionary and functional shifts with special emphasis on the role of the environment. For this purpose, we studied the fungal lipase/feruloyl esterase A family, whose functional diversification makes it a very promising candidate. RESULTS: The results suggested functional shift following a duplication event where neofunctionalisation of feruloyl esterase A had occurred with conservation of the ancestral lipase function. Evolutionary shift was detected using the branch-site model for testing positive selection on individual codons along specific lineages. Positively selected amino acids were detected. Furthermore, biological data obtained from site-directed mutagenesis experiments clearly demonstrated that certain amino acids under positive selection were involved in the functional shift. We reassessed evolutionary history in terms of environmental response, and hypothesized that environmental changes such as colonisation by terrestrial plants might have driven adaptation by functional diversification in Euascomycetes (Aspergilli), thus conferring a selective advantage on this group. CONCLUSION: The results reported here illustrate a rare example of connection between fundamental events in molecular evolution. We demonstrated an unequivocal connection between evolutionary and functional shifts, which led us to conclude that these events were probably linked to environmental change.


Assuntos
Aspergillus/enzimologia , Hidrolases de Éster Carboxílico/química , Evolução Molecular , Lipase/química , Aminoácidos/química , Hidrolases de Éster Carboxílico/genética , Códon , Lipase/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Fatores de Tempo
8.
FEBS Lett ; 580(25): 5815-21, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17027758

RESUMO

The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) of feruloyl esterase A (FAEA) was studied. From the most to the least thermo-resistant, the four molecular species ranked as follows: (i) glycosylated form produced native, (ii) non-glycosylated form produced native, (iii) non-glycosylated form produced as inclusion bodies and refolded, and (iv) glycosylated form produced native chemically denatured and then refolded. On the basis of these results and of crystal structure data, we discuss the respective importance of protein folding and glycosylation in the thermal stability of recombinant FAEA.


Assuntos
Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Aspergillus niger/enzimologia , Aspergillus niger/genética , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Glicosilação , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
9.
Carbohydr Res ; 341(11): 1820-7, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16697997

RESUMO

Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp. The specificity of both enzymes against natural and synthetic substrates was evaluated; particular attention was paid to quinic esters and lignin monomers. The efficiency of both enzymes on model substrates was studied. We show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acids and lignin monomer.


Assuntos
Agricultura/métodos , Agroquímicos/análise , Hidrolases de Éster Carboxílico/metabolismo , Hidroxibenzoatos/metabolismo , Resíduos Industriais/análise , Aspergillus niger/enzimologia , Biodegradação Ambiental , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo , Café/química , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/metabolismo , Hidrólise , Hidroxibenzoatos/química , Isoenzimas/metabolismo , Malus/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Plantas Comestíveis/química , Especificidade por Substrato , Zea mays/química
10.
J Biotechnol ; 115(4): 333-43, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15639095

RESUMO

Wild and recombinant hydrolases and oxidoreductases with a potential interest for environmentally sound bleaching of high-quality paper pulp (from flax) were incorporated into a totally chlorine free (TCF) sequence that also included a peroxide stage. The ability of feruloyl esterase (from Aspergillus niger) and Mn2+-oxidizing peroxidases (from Phanerochaete chrysosporium and Pleurotus eryngii) to decrease the final lignin content of flax pulp was shown. Laccase from Pycnoporus cinnabarinus (without mediator) also caused a slight improvement of pulp brightness that was increased in the presence of aryl-alcohol oxidase. However, the best results were obtained when the laccase treatment was performed in the presence of a mediator, 1-hydroxybenzotriazol (HBT), enabling strong delignification of pulps. The enzymatic removal of lignin resulted in high-final brightness values that are difficult to attain by chemical bleaching of this type of pulp. A partial inactivation of laccase by HBT was observed but this negative effect was strongly reduced in the presence of pulp. The good results obtained with the same laccase expressed in A. niger at bioreactor scale, revealed the feasibility of using recombinant laccase for bleaching high-quality non-wood pulps in the presence of a mediator.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial , Papel , Aspergillus niger/enzimologia , Aspergillus niger/genética , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Oxirredutases/metabolismo , Phanerochaete/enzimologia , Phanerochaete/genética , Pleurotus/enzimologia , Pleurotus/genética , Proteínas Recombinantes/metabolismo , Triazóis/metabolismo
11.
J Biotechnol ; 115(1): 47-56, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15607224

RESUMO

Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.


Assuntos
Aspergillus niger/classificação , Aspergillus niger/enzimologia , Ácidos Cafeicos/síntese química , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/isolamento & purificação , Ácido Clorogênico/química , Catálise , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Especificidade da Espécie , Especificidade por Substrato , Temperatura
12.
Protein Expr Purif ; 37(1): 126-33, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15294290

RESUMO

The faeB gene encoding the feruloyl esterase B (FAEB) was isolated from Aspergillus niger BRFM131 genomic DNA. The faeB gene, with additional sequence coding for a C-terminal histidine tag, was inserted into an expression vector under the control of the gpd promoter and trpC terminator and expressed in a protease deficient A. niger strain. Homologous overproduction allows to reach an esterase activity of 18 nkat mL(-1) against MCA as substrate. The improvement factor was 16-fold higher as compared to the production level obtained with non-transformed A. niger strain induced by sugar beet pulp. The corresponding secretion yield was estimated to be around 100 mg L(-1). Recombinant FAEB was purified 14.6-fold to homogeneity from an 8-day-old culture by a single affinity chromatographic step with a recovery of 64%. SDS-PAGE revealed a single band with a molecular mass of 75 kDa, while under non-denatured conditions, native enzyme has a molecular mass of around 150 kDa confirming that the recombinant FAEB is a homodimer. The recombinant and native FAEB have the same characteristics concerning temperature and pH optima, i.e., 50 degrees C and 6, respectively. In addition, the recombinant FAEB was determined to be quite stable up to 50 degrees C for 120 min. Kinetic constants for MCA, MpCA, and chlorogenic acid (5-O-caffeoyl quinic acid) were as follows: Km: 0.13, 0.029, and 0.16 mM and Vmax: 1101, 527.6, and 28.3 nkat mg(-1), respectively. This is the first report on the homologous overproduction of feruloyl esterase B in A. niger.


Assuntos
Aspergillus niger , Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Isoenzimas , Proteínas Recombinantes , Aspergillus niger/enzimologia , Aspergillus niger/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
13.
Appl Biochem Biotechnol ; 102-103(1-6): 141-53, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12396118

RESUMO

A new process involving the filamentous fungi Aspergillus niger and Pycnoporus cinnabarinus has been designed for the release of ferulic acid by enzymic degradation of a cheap and natural agricultural byproduct (autoclaved maize bran) and its biotransformation into vanillic acid and/or vanillin with a limited number of steps. On the one hand, the potentialities of A. niger I-1472 to produce high levels of polysaccharide-degrading enzymes including feruloyl esterases and to transform ferulic acid into vanillic acid were successfully combined for the release of free ferulic acid from autoclaved maize bran. Then vanillic acid was recovered and efficiently transformed into vanillin by P. cinnabarinus MUCL39533, since 767 mg/L of biotechnologic vanillin could be produced in the presence of cellobiose and XAD-2 resin. On the other hand, 3-d-old high-density cultures of P. cinnabarinus MUCL39533 could be fed with the autoclaved fraction of maize bran as a ferulic acid source and A. niger I-1472 culture filtrate as an extracellular enzyme source. Under these conditions, P. cinnabarinus MUCL39533 was shown to directly biotransform free ferulic acid released from the autoclaved maize bran by A. niger I-1472 enzymes into 584 mg/L of vanillin. These processes, involving physical enzymic, and fungal treatments, permitted us to produce crystallin vanillin from autoclaved maize bran without any purification step.


Assuntos
Aspergillus niger/metabolismo , Basidiomycota/metabolismo , Benzaldeídos/metabolismo , Biotecnologia/métodos , Zea mays/metabolismo , Benzaldeídos/química , Ácidos Cumáricos/metabolismo , Cristalização , Hidrolases/metabolismo , Ácido Vanílico/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...