Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Clin Endocrinol Diabetes ; 124(10): 602-612, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27684726

RESUMO

The pathways through which fatty acids induce insulin resistance have been the subject of much research. We hypothesise that by focussing on the reversal of insulin resistance, novel insights can be made regarding the mechanisms by which insulin resistance can be overcome. Using global gene and lipid expression profiling, we aimed to identify biological pathways altered during the prevention of palmitate-induced glucose production in hepatocytes using metformin and sodium salicylate. FAO hepatoma cells were treated with palmitate (0.075 mM, 48 h) with or without metformin (0.25 mM) and sodium salicylate (2 mM) in the final 24 h of palmitate treatment, and effects on glucose production were determined. RNA microarray measurements followed by gene set enrichment analysis were performed to investigate pathway regulation. Lipidomic analysis and measurement of secreted bile acids and cholesterol were also performed. Reversal of palmitate-induced glucose production by metformin and sodium salicylate was characterised by co-ordinated down-regulated expression of pathways regulating acetyl-CoA to cholesterol and bile acid biosynthesis. All 20 enzymes that regulate the conversion of acetyl-CoA to cholesterol were reduced following metformin and sodium salicylate. Selected findings were confirmed using primary mouse hepatocytes. Although total intracellular levels of diacylglycerol, triacylglycerol and cholesterol esters increased with palmitate, these were not, however, further altered by metformin and sodium salicylate. 6 individual diacylglycerol, triacylglycerol and cholesterol ester species containing 18:0 and 18:1 side-chains were reduced by metformin and sodium salicylate. These results implicate acetyl-CoA metabolism and C18 lipid species as modulators of hepatic glucose production that could be targeted to improve glucose homeostasis.

2.
Transplant Proc ; 45(2): 574-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23267797

RESUMO

In human islet transplantation, insulin independence decreases over time. We previously showed that amyloid deposition following transplantation of islets from human islet amyloid polypeptide (hIAPP) transgenic mice resulted in ß-cell loss and that rosiglitazone treatment decreased islet amyloid deposition and preserved ß-cell area in the endogenous pancreas of hIAPP transgenic mice. Thus, we sought to determine if rosiglitazone treatment decreases islet amyloid deposition and the associated ß-cell loss after islet transplantation. Streptozocin-diabetic mice were transplanted with 100 islets from hIAPP transgenic (T) mice or nontransgenic (NT) littermates under the kidney capsule and received either rosiglitazone (R) in drinking water or plain drinking water (C). The resultant groups (NTC [n = 11], NTR [n = 9], TC [n = 14], and TR [n = 10]) were followed for 12 weeks after which the graft was removed and processed for histology. Amyloid was detected in nearly all T islet grafts (TC = 13/14, TR = 10/10) but not in NT grafts. Rosiglitazone did not alter amyloid deposition (% graft area occupied by amyloid; TC: 2.15 ± 0.7, TR: 1.72 ± 0.66; P = .86). % ß-cell/graft area was decreased in the TC grafts compared to NTC (56.2 ± 3.1 vs 73.8 ± 1.4; P < .0001) but was not different between TC and TR groups (56.2 ± 3.1 vs 61.0 ± 2.9; P = .34). Plasma glucose levels before and after transplantation did not differ between NTC and TC groups and rosiglitazone did not affect plasma glucose levels post-islet transplantation. Rosiglitazone did not decrease amyloid deposition in hIAPP transgenic islet grafts. Therefore, rosiglitazone treatment of recipients of amyloid forming islets may not improve transplantation outcomes.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Hipoglicemiantes/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Rosiglitazona , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Tiazolidinedionas/sangue , Fatores de Tempo
3.
Diabetologia ; 55(1): 166-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22038516

RESUMO

AIMS/HYPOTHESIS: Aggregation of human islet amyloid polypeptide (hIAPP) as islet amyloid is associated with increased beta cell apoptosis and reduced beta cell mass in type 2 diabetes. Islet amyloid formation induces oxidative stress, which contributes to beta cell apoptosis. The cJUN N-terminal kinase (JNK) pathway is a critical mediator of beta cell apoptosis in response to stress stimuli including oxidative stress and exogenous application of hIAPP. We determined whether amyloid formation by endogenous hIAPP mediates beta cell apoptosis through JNK activation and downstream signalling pathways. METHODS: hIAPP transgenic and non-transgenic mouse islets were cultured for up to 144 h in 16.7 mmol/l glucose to induce islet amyloid in the presence or absence of the amyloid inhibitor Congo Red or a cell-permeable JNK inhibitor. Amyloid, beta cell apoptosis, JNK signalling and activation of downstream targets in the intrinsic and extrinsic apoptotic pathways were measured. RESULTS: JNK activation occurred with islet amyloid formation in hIAPP transgenic islets after 48 and 144 h in culture. Neither high glucose nor the hIAPP transgene alone was sufficient to activate JNK independent of islet amyloid. Inhibition of islet amyloid formation with Congo Red reduced beta cell apoptosis and partially decreased JNK activation. JNK inhibitor treatment reduced beta cell apoptosis without affecting islet amyloid. Islet amyloid increased mRNA levels of markers of the extrinsic (Fas, Fadd) and intrinsic (Bim [also known as Bcl2l11]) apoptotic pathways, caspase 3 and the anti-apoptotic molecule Bclxl (also known as Bcl2l1) in a JNK-dependent manner. CONCLUSIONS/INTERPRETATION: Islet amyloid formation induces JNK activation, which upregulates predominantly pro-apoptotic signals in both extrinsic and intrinsic pathways, resulting in beta cell apoptosis.


Assuntos
Apoptose , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Amiloide/antagonistas & inibidores , Amiloide/química , Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hemizigoto , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Técnicas de Cultura de Tecidos
4.
Diabetologia ; 54(7): 1756-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21484213

RESUMO

AIMS/HYPOTHESIS: In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity. METHODS: Islets from amyloid-forming human IAPP transgenic and control non-transgenic mice were cultured for 48 h in 16.7 mmol/l glucose alone (control) or with exendin-4, potassium chloride (KCl), diazoxide or somatostatin. Human IAPP and insulin release, amyloid deposition, beta cell area/islet area, apoptosis and AKT phosphorylation levels were determined. RESULTS: In control human IAPP transgenic islets, amyloid formation was associated with increased beta cell apoptosis and beta cell loss. Increasing human IAPP release with exendin-4 or KCl increased amyloid deposition. However, while KCl further increased beta cell apoptosis and beta cell loss, exendin-4 did not. Conversely, decreasing human IAPP release with diazoxide or somatostatin limited amyloid formation and its toxic effects. Treatment with exendin-4 was associated with an increase in AKT phosphorylation compared with control and KCl-treated islets. CONCLUSIONS/INTERPRETATION: IAPP release is necessary for islet amyloid formation and its toxic effects. Thus, use of insulin secretagogues to treat type 2 diabetes may result in increased islet amyloidogenesis and beta cell death. However, the AKT-associated anti-apoptotic effects of GLP-1 receptor agonists such as exendin-4 may limit the toxic effects of increased islet amyloid.


Assuntos
Amiloide/metabolismo , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diazóxido/farmacologia , Exenatida , Humanos , Técnicas In Vitro , Células Secretoras de Insulina/citologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Somatostatina/farmacologia
5.
Diabetologia ; 52(6): 1102-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19352619

RESUMO

AIMS/HYPOTHESIS: Supraphysiological levels of the amyloidogenic peptide human islet amyloid polypeptide have been associated with beta cell endoplasmic reticulum (ER) stress. However, in human type 2 diabetes, levels of human IAPP are equivalent or decreased relative to matched controls. Thus, we sought to investigate whether ER stress is induced during amyloidogenesis at physiological levels of human IAPP. METHODS: Islets from human IAPP transgenic mice that develop amyloid, and non-transgenic mice that do not, were cultured for up to 7 days in 11.1, 16.7 and 33.3 mmol/l glucose. Pancreases from human IAPP transgenic and non-transgenic mice and humans with or without type 2 diabetes were also evaluated. Amyloid formation was determined histologically. ER stress was determined in islets by quantifying mRNA levels of Bip, Atf4 and Chop (also known as Ddit3) and alternate splicing of Xbp1 mRNA, or in pancreases by immunostaining for immunoglobulin heavy chain-binding protein (BIP), C/EBP homologous protein (CHOP) and X-box binding protein 1 (XBP1). RESULTS: Amyloid formation in human IAPP transgenic islets was associated with reduced beta cell area in a glucose- and time-dependent manner. However, amyloid formation was not associated with significant increases in expression of ER stress markers under any culture condition. Thapsigargin treatment, a positive control, did result in significant ER stress. Amyloid formation in vivo in pancreas samples from human IAPP transgenic mice or humans was not associated with upregulation of ER stress markers. CONCLUSIONS/INTERPRETATION: Our data suggest that ER stress is not an obligatory pathway mediating the toxic effects of amyloid formation at physiological levels of human IAPP.


Assuntos
Amiloide/metabolismo , Retículo Endoplasmático/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Amiloide/genética , Animais , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Ágar , Feminino , Glucose , Humanos , Imuno-Histoquímica , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
6.
Diabetologia ; 52(4): 626-35, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19148619

RESUMO

AIMS/HYPOTHESIS: Islet amyloid in type 2 diabetes contributes to loss of beta cell mass and function. Since islets are susceptible to oxidative stress-induced toxicity, we sought to determine whether islet amyloid formation is associated with induction of oxidative stress. METHODS: Human islet amyloid polypeptide transgenic and non-transgenic mouse islets were cultured for 48 or 144 h with or without the antioxidant N-acetyl-L: -cysteine (NAC) or the amyloid inhibitor Congo Red. Amyloid deposition, reactive oxygen species (ROS) production, beta cell apoptosis, and insulin secretion, content and mRNA were measured. RESULTS: After 48 h, amyloid deposition was associated with increased ROS levels and increased beta cell apoptosis, but no change in insulin secretion, content or mRNA levels. Antioxidant treatment prevented the rise in ROS, but did not prevent amyloid formation or beta cell apoptosis. In contrast, inhibition of amyloid formation prevented the induction of oxidative stress and beta cell apoptosis. After 144 h, amyloid deposition was further increased and was associated with increased ROS levels, increased beta cell apoptosis and decreased insulin content. At this time-point, antioxidant treatment and inhibition of amyloid formation were effective in reducing ROS levels, amyloid formation and beta cell apoptosis. Inhibition of amyloid formation also increased insulin content. CONCLUSIONS/INTERPRETATION: Islet amyloid formation induces oxidative stress, which in the short term does not mediate beta cell apoptosis, but in the longer term may feed back to further exacerbate amyloid formation and contribute to beta cell apoptosis.


Assuntos
Amiloide/biossíntese , Apoptose/fisiologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Estresse Oxidativo/fisiologia , Amiloide/genética , Amiloide/fisiologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Insulina/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Diabetologia ; 52(1): 145-53, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19002432

RESUMO

AIMS/HYPOTHESIS: Islet transplantation is a potential cure for diabetes; however, rates of graft failure remain high. The aim of the present study was to determine whether amyloid deposition is associated with reduced beta cell volume in islet grafts and the recurrence of hyperglycaemia following islet transplantation. METHODS: We transplanted a streptozotocin-induced mouse model of diabetes with 100 islets from human IAPP (which encodes islet amyloid polypeptide) transgenic mice that have the propensity to form islet amyloid (n = 8-12) or from non-transgenic mice that do not develop amyloid (n = 6-10) in sets of studies that lasted 1 or 6 weeks. RESULTS: Plasma glucose levels before and for 1 week after transplantation were similar in mice that received transgenic or non-transgenic islets, and at that time amyloid was detected in all transgenic grafts and, as expected, in none of the non-transgenic grafts. However, over the 6 weeks following transplantation, plasma glucose levels increased in transgenic but remained stable in non-transgenic islet graft recipients (p < 0.05). At 6 weeks, amyloid was present in 92% of the transgenic grafts and in none of the non-transgenic grafts. Beta cell volume was reduced by 30% (p < 0.05), beta cell apoptosis was twofold higher (p < 0.05), and beta cell replication was reduced by 50% (p < 0.001) in transgenic vs non-transgenic grafts. In summary, amyloid deposition in islet grafts occurs prior to the recurrence of hyperglycaemia and its accumulation over time is associated with beta cell loss. CONCLUSIONS/INTERPRETATION: Islet amyloid formation may explain, in part, the non-immune loss of beta cells and recurrence of hyperglycaemia following clinical islet transplantation.


Assuntos
Amiloide/biossíntese , Diabetes Mellitus Experimental/cirurgia , Hiperglicemia/metabolismo , Células Secretoras de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Amiloide/genética , Animais , Apoptose , Glicemia/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Pâncreas/fisiologia , Recidiva
8.
Diabetologia ; 51(4): 540-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18246324

RESUMO

In many countries, first- or second-line pharmacological treatment of patients with type 2 diabetes consists of sulfonylureas (such as glibenclamide [known as glyburide in the USA and Canada]), which stimulate the beta cell to secrete insulin. However, emerging evidence suggests that forcing the beta cell to secrete insulin at a time when it is struggling to cope with the demands of obesity and insulin resistance may accelerate its demise. Studies on families with persistent hyperinsulinaemic hypoglycaemia of infancy (PHHI), the primary defect of which is hypersecretion of insulin, have shown that overt diabetes can develop later in life despite normal insulin sensitivity. In addition, in vitro experiments have suggested that reducing insulin secretion from islets isolated from patients with diabetes can restore insulin pulsatility and improve function. This article will explore the hypothesis that forcing the beta cell to hypersecrete insulin may be counterproductive and lead to dysfunction and death via mechanisms that may involve the endoplasmic reticulum and oxidative stress. We suggest that, in diabetes, therapeutic approaches should be targeted towards relieving the demand on the beta cell to secrete insulin.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/fisiopatologia , Humanos , Hiperinsulinismo/complicações , Hiperinsulinismo/etiologia , Hiperinsulinismo/fisiopatologia , Secreção de Insulina , Células Secretoras de Insulina/patologia , Estresse Oxidativo
9.
Diabetologia ; 50(12): 2476-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17922105

RESUMO

AIMS/HYPOTHESIS: Insulin hypersecretion may be an independent predictor of progression to type 2 diabetes. Identifying genes affecting insulin hypersecretion are important in understanding disease progression. We have previously shown that diabetes-susceptible DBA/2 mice congenitally display high insulin secretion. We studied this model to map and identify the gene(s) responsible for this trait. METHODS: Intravenous glucose tolerance tests followed by a genome-wide scan were performed on 171 (C57BL/6 x DBA/2) x C57BL/6 backcross mice. RESULTS: A quantitative trait locus, designated hyperinsulin production-1 (Hip1), was mapped with a logarithm of odds score of 7.7 to a region on chromosome 13. Production of congenic mice confirmed that Hip1 influenced the insulin hypersecretion trait. By studying appropriate recombinant inbred mouse strains, the Hip1 locus was further localised to a 2 Mb interval, which contained only nine genes. Expression analysis showed that the only gene differentially expressed in islets isolated from the parental strains was Nnt, which encodes the mitochondrial proton pump, nicotinamide nucleotide transhydrogenase (NNT). We also found in five mouse strains a positive correlation (r2 = 0.90, p < 0.01) between NNT activity and first-phase insulin secretion, emphasising the importance of this enzyme in beta cell function. Furthermore, of these five strains, only those with high NNT activity are known to exhibit severe diabetes after becoming obese. CONCLUSIONS/INTERPRETATION: Insulin hypersecretion is associated with increased Nnt expression. We suggest that NNT must play an important role in beta cell function and that its effect on the high insulin secretory capacity of the DBA/2 mouse may predispose beta cells of these mice to failure.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Insulina/metabolismo , NADP Trans-Hidrogenases/genética , Animais , Diabetes Mellitus Tipo 2/sangue , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Genótipo , Teste de Tolerância a Glucose , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Íntrons/genética , Masculino , Doenças Metabólicas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Mutantes , NADP Trans-Hidrogenases/metabolismo , NADP Trans-Hidrogenases/fisiologia
10.
Diabetologia ; 49(6): 1254-63, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16570159

RESUMO

AIMS/HYPOTHESIS: We determined whether high-glucose-induced beta cell dysfunction is associated with oxidative stress in the DBA/2 mouse, a mouse strain susceptible to islet failure. MATERIALS AND METHODS: Glucose- and non-glucose-mediated insulin secretion from the islets of DBA/2 and control C57BL/6 mice was determined following a 48-h exposure to high glucose. Flux via the hexosamine biosynthesis pathway was assessed by determining O-glycosylated protein levels. Oxidative stress was determined by measuring hydrogen peroxide levels and the expression of anti-oxidant enzymes. RESULTS: Exposure to high glucose levels impaired glucose-stimulated insulin secretion in DBA/2 islets but not C57BL/6 islets, and this was associated with reduced islet insulin content and lower ATP levels than in C57BL/6 islets. Exposure of islets to glucosamine for 48 h mimicked the effects of high glucose on insulin secretion in the DBA/2 islets. High glucose exposure elevated O-glycosylated proteins; however, this occurred in islets from both strains, excluding a role for O-glycosylation in the impairment of DBA/2 insulin secretion. Additionally, both glucosamine and high glucose caused an increase in hydrogen peroxide in DBA/2 islets but not in C57BL/6 islets, an effect prevented by the antioxidant N-acetyl-L: -cysteine. Interestingly, while glutathione peroxidase and catalase expression was comparable between the two strains, the antioxidant enzyme manganese superoxide dismutase, which converts superoxide to hydrogen peroxide, was increased in DBA/2 islets, possibly explaining the increase in hydrogen peroxide levels. CONCLUSIONS/INTERPRETATION: Chronic high glucose culture caused an impairment in glucose-stimulated insulin secretion in DBA/2 islets, which have a genetic predisposition to failure, and this may be the result of oxidative stress.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse Oxidativo/genética , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Primers do DNA , Regulação da Expressão Gênica , Glucose/farmacologia , Glicosilação , Peróxido de Hidrogênio/análise , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...