Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eukaryot Cell ; 10(11): 1545-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21890818

RESUMO

In response to harsh environmental conditions, ascomycetes produce stress-resistant spores to promote survival. As sporulation requires a diploid DNA content, species with a haploid lifestyle, such as Kluyveromyces lactis, first induce mating in response to stress. In K. lactis, mating and mating-type switching are induced by the DNA-binding protein Mts1. Mts1 expression is known to be upregulated by nutrient limitation, but the mechanism is unknown. We show that a ras2 mutation results in a hyperswitching phenotype. In contrast, strains lacking the phosphodiesterase Pde2 had lower switching rates compared to that of the wild type (WT). As Ras2 promotes cyclic AMP (cAMP) production and Pde2 degrades cAMP, these data suggest that low cAMP levels induce switching. Because the MTS1 regulatory region contains several Msn2 binding sites and Msn2 is a transcription factor that is activated by low cAMP levels, we investigated if Msn2 regulates MTS1 transcription. Consistently with this idea, an msn2 mutant strain displayed lower switching rates than the WT strain. The transcription of MTS1 is highly induced in the ras2 mutant strain. In contrast, an msn2 ras2 double mutant strain displays WT levels of the MTS1 transcript, showing that Msn2 is a critical inducer of MTS1 transcription. Strains lacking Msn2 and Pde2 also exhibit mating defects that can be complemented by the ectopic expression of Mts1. Finally, we show that MTS1 is subjected to negative autoregulation, presumably adding robustness to the mating and switching responses. We suggest a model in which Ras2/cAMP/Msn2 mediates the stress-induced mating and mating-type switching responses in K. lactis.


Assuntos
AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Kluyveromyces/fisiologia , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo , AMP Cíclico/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/biossíntese , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/metabolismo , Fenótipo , Reprodução/genética , Estresse Fisiológico , Proteínas ras/genética
2.
Genetics ; 184(4): 999-1011, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139343

RESUMO

To explore the similarities and differences of regulatory circuits among budding yeasts, we characterized the role of the unscheduled meiotic gene expression 6 (UME6) gene in Kluyveromyces lactis. We found that Ume6 was required for transcriptional silencing of the cryptic mating-type loci HMLalpha and HMRa. Chromatin immunoprecipitation (ChIP) suggested that Ume6 acted directly by binding the cis-regulatory silencers of these loci. Unexpectedly, a MATa ume6 strain was mating proficient, whereas a MATalpha ume6 strain was sterile. This observation was explained by the fact that ume6 derepressed HMLalpha2 only weakly, but derepressed HMRa1 strongly. Consistently, two a/alpha-repressed genes (MTS1 and STE4) were repressed in the MATalpha ume6 strain, but were expressed in the MATa ume6 strain. Surprisingly, ume6 partially suppressed the mating defect of a MATa sir2 strain. MTS1 and STE4 were repressed in the MATa sir2 ume6 double-mutant strain, indicating that the suppression acted downstream of the a1/alpha2-repressor. We show that both STE12 and the MATa2/HMRa2 genes were overexpressed in the MATa sir2 ume6 strain. Consistent with the idea that this deregulation suppressed the mating defect, ectopic overexpression of Ste12 and a2 in a MATa sir2 strain resulted in efficient mating. In addition, Ume6 served as a block to polyploidy, since ume6/ume6 diploids mated as pseudo a-strains. Finally, Ume6 was required for repression of three meiotic genes, independently of the Rpd3 and Sin3 corepressors.


Assuntos
Proteínas de Bactérias/metabolismo , Inativação Gênica , Kluyveromyces/citologia , Kluyveromyces/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fertilidade/genética , Proteínas Fúngicas/genética , Regulação Bacteriana da Expressão Gênica , Loci Gênicos/genética , Haploidia , Infertilidade/genética , Kluyveromyces/metabolismo , Kluyveromyces/fisiologia , Meiose/genética , Dados de Sequência Molecular , Mutação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuínas/genética , Esporos Bacterianos
3.
Curr Biol ; 11(20): 1611-7, 2001 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11676923

RESUMO

Mutant yeast strains lacking the silencing proteins Sir2p, Sir3p, or Sir4p have a defect in a DNA double-strand break (DSB) repair pathway, called nonhomologous end joining (NHEJ). Mutations in sir genes also lead to the simultaneous expression of a and alpha mating type information, thus generating a nonmating haploid cell type with many properties shared with a/alpha diploids. We addressed whether cell type or Sir proteins per se regulate NHEJ by investigating the role of a novel haploid-specific gene in NHEJ. This gene, NEJ1, was required for efficient NHEJ, and transcription of NEJ1 was completely repressed in a/alpha diploid and sir haploid strains. The NEJ1 promoter contained a consensus binding site for the a1/alpha2 repressor, explaining the cell type-specific expression. Expression of Nej1p from a constitutive promoter in a/alpha diploid and sir mutant strains completely rescued the defect in NHEJ, thus showing that Sir proteins per se were dispensable for NHEJ. Nej1p and Lif1(P), the yeast XRCC4 homolog, interacted in two independent assays, and Nej1p localized to the nucleus, suggesting that Nej1p may have a direct role in NHEJ.


Assuntos
Proteínas de Bactérias/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/genética , Genes Fúngicos/fisiologia , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
4.
Genetics ; 156(1): 81-91, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10978277

RESUMO

In Saccharomyces cerevisiae, transcriptional silencing of the cryptic mating type loci requires the formation of a heterochromatin-like structure, which is dependent on silent information regulator (Sir) proteins and DNA sequences, called silencers. To learn more about silencing, we characterized the mating type loci from the yeast Kluyveromyces lactis. The K. lactis MAT, HMRa, and HMLalpha loci shared flanking DNA sequences on both sides of the loci presumably acting as recombinational targets during mating type switching. HMRa contained two genes, the a1 gene similar to the Saccharomyces a1 gene and the a2 gene similar to mating type genes from other yeasts. K. lactis HMLalpha contained three genes, the alpha1 and alpha2 genes, which were similar to their Saccharomyces counterparts, and a novel third gene, alpha3. A dam-methylase assay showed Sir-dependent, but transcription-independent changes of the chromatin structure of the HMLalpha locus. The HMLalpha3 gene did not appear to be part of the silent domain because alpha3p was expressed from both MATalpha3 and HMLalpha3 and sir mutations failed to change the chromatin structure of the HMLalpha3 gene. Furthermore, a 102-bp silencer element was isolated from the HMLalpha flanking DNA. HMLalpha was also flanked by an autonomously replicating sequence (ARS) activity, but the ARS activity did not appear to be required for silencer function. K. lactis sir2 strains grown in the presence of ethidium bromide (EtBr) accumulated the drug, which interfered with the essential mitochondrial genome. Mutations that bypassed the requirement for the mitochondrial genome also bypassed the EtBr sensitivity of sir2 strains. Sir2p localized to the nucleus, indicating that the role of Sir2p to hinder EtBr accumulation was an indirect regulatory effect. Sir2p was also required for growth in the presence of high concentrations of Ni(2+) and Cu(2+).


Assuntos
Cromatina/genética , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Transativadores/metabolismo , Sequência de Bases , Cátions/farmacologia , Primers do DNA/genética , Proteínas Fúngicas/genética , Expressão Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Histona Desacetilases/genética , Kluyveromyces/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Recombinação Genética , Sirtuína 2 , Sirtuínas , Transativadores/genética
5.
Mol Gen Genet ; 261(6): 967-76, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10485288

RESUMO

The Saccharomyces cerevisiae gene RIT1 encodes a phospho-ribosyl transferase that exclusively modifies the initiator tRNA (tRNAMet(i)) by the addition of a 2'-O-ribosyl phosphate group to Adenosine 64. As a result, tRNAMet(i) is prevented from participating in the elongation steps of protein synthesis. We previously showed that the modification is not essential for the function of tRNAMet(i) in the initiation of translation, since rit1 null strains are viable and show no obvious growth defects. Here, we demonstrate that yeast strains in which a rit1 null allele is combined with mutations in any of the genes for the three subunits of eukaryotic initiation factor-2 (eIF-2), or with disruption alleles of two of the four initiator methionine tRNA (IMT) genes, show synergistic growth defects. A multicopy plasmid carrying an IMT gene can alleviate these defects. On the other hand, introduction of a high-copy-number plasmid carrying the TEF2 gene, which encodes the eukaryotic elongation factor 1alpha (eEF-1alpha), into rit1 null strains with two intact IMT genes had the opposite effect, indicating that increased levels of eEF-1alpha are deleterious to these strains, presumably due to sequestration of the unmodified met-tRNAMet(i) for elongation. Thus, under conditions in which the components of the ternary met-tRNAMet(i):GTP:eIF-2 complex become limiting or are functionally impaired, the presence of the 2'-O-ribosyl phosphate modification in tRNAMet(i) is important for the provision of adequate amounts of tRNAMet(i) for formation of this ternary complex.


Assuntos
Alelos , Proteínas de Ligação a DNA , Pentosiltransferases/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Carboidratos , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Mutação , Proteínas Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
Genetics ; 148(3): 1021-9, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9539421

RESUMO

The cryptic mating type loci in Saccharomyces cerevisiae act as reservoirs of mating type information used in mating type switching in homothallic yeast strains. The transcriptional silencing of these loci depends on the formation of a repressive chromatin structure that is reminiscent of heterochromatin. Silent information regulator (Sir) proteins 2-4 are absolutely required for silencing. To learn more about silencing, we investigated mating type and Sir proteins in the yeast Kluyveromyces lactis, which contains cryptic copies of the mating type genes. A functional homolog of SIR4 from K. lactis complements the silencing defect of sir4 null mutations in S. cerevisiae. K. lactis sir2 and sir4 mutant strains showed partial derepression of the silent alpha1 gene, establishing that the silencing role of these proteins is conserved. K. lactis sir2 mutants are more sensitive than the wild type to ethidium bromide, and K. lactis sir4 mutants are more resistant phenotypes that are not observed for the corresponding mutants of S. cerevisiae. Finally, the deletion of sir4 in the two yeasts leads to opposite effects on telomere length. Thus, Sir proteins from K. lactis have roles in both silencing and telomere length maintenance, reflecting conserved functional themes. The various phenotypes of sir mutants in K. lactis and S. cerevisiae, however, revealed unanticipated variation between their precise roles.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Variação Genética , Histona Desacetilases , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Transativadores/genética , Clonagem Molecular , Proteínas de Ligação a DNA/efeitos dos fármacos , Etídio/farmacologia , Proteínas Fúngicas/efeitos dos fármacos , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Substâncias Intercalantes/farmacologia , Mutagênese , Fenótipo , Sirtuína 2 , Sirtuínas , Telômero/metabolismo , Transativadores/efeitos dos fármacos
8.
Mol Cell Biol ; 15(1): 217-26, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7528326

RESUMO

Retroviruses and long terminal repeat-containing retroelements use host-encoded tRNAs as primers for the synthesis of minus strong-stop DNA, the first intermediate in reverse transcription of the retroelement RNA. Usually, one or more specific tRNAs, including the primer, are selected and packaged within the virion. The reverse transcriptase (RT) interacts with the primer tRNA and initiates DNA synthesis. The structural and sequence features of primer tRNAs important for these specific interactions are poorly understood. We have developed a genetic assay in which mutants of tRNA(iMet), the primer for the Ty1 retrotransposon of Saccharomyces cerevisiae, can be tested for the ability to serve as primers in the reverse transcription process. This system allows any tRNA mutant to be tested, regardless of its ability to function in the initiation of protein synthesis. We find that mutations in the T psi C loop and the acceptor stem regions of the tRNA(iMet) affect transposition most severely. Conversely, mutations in the anticodon region have only minimal effects on transposition. Further study of the acceptor stem and other mutants demonstrates that complementarity to the element primer binding site is a necessary but not sufficient requirement for effective tRNA priming. Finally, we have used interspecies hybrid initiator tRNA molecules to implicate nucleotides in the D arm as additional recognition determinants. Ty3 and Ty1, two very distantly related retrotransposons, require similar molecular determinants in this primer tRNA for transposition.


Assuntos
RNA de Transferência de Metionina/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos , Saccharomyces cerevisiae/genética , Sequência de Bases , Primers do DNA/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA de Transferência de Metionina/química , Schizosaccharomyces/genética , Relação Estrutura-Atividade
9.
Cell ; 79(3): 535-46, 1994 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-7954819

RESUMO

Using a genetic screen in yeast aimed at identifying cellular factors involved in initiator and elongator methionine tRNA discrimination in the translational process, we have identified a mutation that abolish the requirement for elongator methionine tRNA. The gene affected, which we call the ribosylation of the initiator tRNA gene or RIT1, encodes a 2'-O-ribosyl phosphate transferase. This enzyme modifies exclusively the initiator tRNA in position 64 using 5'-phosphoribosyl-1'-pyrophosphate as the modification donor. As the initiator tRNA participates both in the initiation and elongation of translation in a rit1 strain, we conclude that the 2'-O-ribosyl phosphate modification discriminates the initiator tRNAs from the elongator tRNAs during protein synthesis. The modification enzyme was shown to recognize the stem-loop IV region that is unique in eukaryotic cytoplasmic initiator tRNAs.


Assuntos
Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência de Metionina/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Fúngicos , Clonagem Molecular , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/metabolismo , Mapeamento por Restrição , Seleção Genética , Análise de Sequência de DNA , Especificidade por Substrato
10.
J Mol Biol ; 233(1): 43-58, 1993 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-8377191

RESUMO

Saccharomyces cerevisiae uses two different methionine accepting tRNAs during protein synthesis. One, tRNA(iMet), is used exclusively during the initiation of translation whereas the other, tRNA(mMet), is used during the elongation of translation. To study the unique features of each methionine tRNA species, we constructed yeast strains with null alleles of the five elongator methionine tRNA (EMT) genes and strains with null alleles of the four initiator methionine tRNA (IMT) genes, respectively. Consequently, growth of these strains was dependent either on a tRNA(mMet) or a tRNA(iMet), respectively, encoded from a plasmid-derived gene. For both null mutants, the plasmid carrying the wild-type gene can be selected against and exchanged for another plasmid derived EMT or IMT gene (wild-type or mutant). A high gene dosage of the wild-type IMT gene could restore growth to the elongator-depleted strain. However, wild-type EMT genes in a high gene dosage never restored growth of the initiator depleted strain. Thus, the elongator tRNA(Met) is much more restricted to participate in the initiation of translation than the initiator tRNA(Met) is restricted to participate in the elongation process. Using the two null mutants, we have identified tRNA(mMet) mutants, which show reduced elongator activity, and tRNA(iMet) mutants, with improved elongator activity in the elongator depleted strain. Also, tRNA(mMet) mutants that function as an initiator tRNA in the initiator depleted strain were identified. From this mutant analysis, we showed that the conserved U/rT at position 54 of the elongator tRNA(Met) is an important determinant for an elongator tRNA. The most important determinant for an initiator was shown to be the acceptor stem and especially the conserved A1.U72 base-pair. Mutant tRNAs, with reduced activity in either process, were investigated for enhanced activity during overproduction of the alpha and beta-subunits of the eukaryotic initiation factor 2 (eIF-2) or the eukaryotic elongation factor 1 alpha (eEF-1 alpha). The data suggest that the U/rT of the elongator at position 54 is important for eEF-1 alpha recognition and that the acceptor stem of the initiator is important for eIF-2 recognition.


Assuntos
Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Genes Fúngicos/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Sítio-Dirigida , Fator 1 de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/biossíntese , Plasmídeos/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...