Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1304: 342557, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637041

RESUMO

BACKGROUND: Nitrite (NO2-) and nitrate (NO3-) can be produced in the distribution systems of chloraminated drinking water due to the nitrification of ammonia. The most applied inorganic chloramine for this purpose, namely monochloramine (NH2Cl), is also released into aquatic environments from water treatment plants' effluent and within industrial waste streams. Within the treatment process, the continuous monitoring of disinfectant levels is necessary to limit the harmful disinfectant by-product (DBP) formation. Currently, NH2Cl can interfere with nutrient analysis in water samples, and there are no analytical techniques available for the simultaneous analysis of NH2Cl, NO2-, and NO3-. RESULTS: A green analytical method based on mixed-mode ion chromatography, specifically ion exchange and ion exclusion modes, was developed for the simultaneous separation and detection of NH2Cl, NO2-, and NO3-. The separation was achieved using a Dionex IonPac AG15 column guard column and a step gradient elution involving deionized water and 120.0 mM NaCl. The method was developed using a benchtop HPLC with a custom-made multi-wavelength UV absorbance detector with a 50-mm flow cell to enable the sensitive detection of NH2Cl, NO2-, and NO3- at 240 nm, 220 nm, and 215 nm, respectively. The developed method was then transferred to a portable ion chromatography (IC) system, the Aquamonitrix analyser. The total run time was less than 10 min for both systems. The benchtop HPLC method had a limit of detection (LOD) of 0.07 µg mL-1 as Cl2 for NH2Cl, 0.01 µg mL-1 for NO2-, and 0.03 µg mL-1 for NO3-. The LODs obtained using the portable Aquamonitrix analyser were found to be 0.36 µg mL-1 as Cl2, 0.02 µg mL-1, and 0.11 µg mL-1 for NH2Cl, NO2-, and NO3-, respectively. Excellent linearity (r ≥ 0.9999) was achieved using the portable analyser over the studied concentration ranges. The developed system was applied to the analysis of spiked municipal drinking water samples and showed excellent repeatability for the three analytes at three different concentration levels (RSD of triplicate recovery experiments ≤ 1.9 %). Moreover, the variation in retention time was negligible for the three target analytes with RSD ≤ 0.8 % over 12 runs. SIGNIFICANCE: We are reporting the first ion chromatographic method for the simultaneous separation and detection of NH2Cl, NO2-, and NO3- in water samples. The monitoring of NH2Cl, NO2-, and NO3- is critical for the determination of disinfectant dosing, water quality, and nitrification status. The developed method can be applied using a benchtop HPLC or via the portable automated IC system to monitor for the three target compounds analysis in water treatment plants.

2.
J Chromatogr A ; 1709: 464382, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37722175

RESUMO

A novel approach for multi-wavelength ultraviolet (UV) absorbance detection has been introduced employing a single board computer (SBC) with a field programmable gate array (FPGA), Red Pitaya SBC, to generate separated micro pulses for three deep-ultraviolet light-emitting diodes (DUV-LEDs), λmax = 235, 250, and 280 nm, along with data acquisition and processing via a custom-made program. The pulse set generation and data acquisition were synchronized using the SBC. The outputs of the three pulsing DUV-LEDs were combined and transmitted to the flow cell via a solarisation resistant trifurcated optical fiber (OF). An ultra-fast responding photodiode was connected to the optical-fiber-compatible flow cell to record the intensity of the DUV pulses. Upper limit of detector linearity (A95 %) was found to be 1917 mAU, 2189 mAU, and 1768 mAU at 235 nm, 250 nm, and 280 nm, respectively, with stray light ≤0.9 %. In addition, the effective path length (Leff) was estimated to be ≥98.0 % of the length of the used flow cell (50 mm). The new pulsed multi-LEDs absorbance detector (PMLAD) has been successfully coupled with a standard liquid chromatograph and utilized for the analysis of pharmaceuticals. Paracetamol, caffeine, and aspirin were simultaneously determined at 250, 280, and 235 nm, respectively, using the PMLAD. The absorbance ratios between the different wavelengths were applied to further confirm the identity of the studied compounds. Excellent linearity was achieved over a range of 0.1-3.2 µg/mL for paracetamol, 0.4-6.4 µg/mL for caffeine, and 0.8-12.8 µg/mL for aspirin with a regression correlation coefficient (r2) ≥ 0.99996. The quantitation limits (LOQs) were 0.10 µg/mL, 0.38 µg/mL, and 0.66 µg/mL for paracetamol, caffeine, and aspirin, respectively.


Assuntos
Cafeína , Raios Ultravioleta , Acetaminofen , Cromatografia Líquida , Aspirina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...