Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-11031638

RESUMO

Self-organized synthetic opals possessing a face centered cubic (fcc) lattice are promising for fabrication of a three-dimensional photonic crystal with a full photonic band gap in the visible. The fundamental limiting factor of this method is the large concentration of lattice defects and, especially, planar stacking faults, which are intrinsic to self-assembling growth of colloidal crystal. We have studied the influence of various types of defects on photonic band structure of synthetic opals by means of optical transmission, reflection and diffraction along different crystallographic directions. We found that in carefully chosen samples the stacking probability alpha can be as high as 0.8-0.9 revealing the strong preference of fcc packing sequence over the hexagonal close-packed (hcp). It is shown that scattering on plane stacking faults located perpendicular to the direction of growth results in a strong anisotropy of diffraction pattern as well as in appearance of a pronounced doublet structure in transmission and reflection spectra taken from the directions other than the direction of growth. This doublet is a direct manifestation of the coexistence of two crystallographic phases--pure fcc and strongly faulted. As a result the inhomogeneously broadened stop-bands overlap over a considerable amount of phase space. The latter, however, does not mean the depletion of the photonic density of states since large disordering results in filling of the partial gaps with both localized and extended states.

2.
Phys Rev Lett ; 85(17): 3680-3, 2000 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11030980

RESUMO

A massive redistribution of the polariton occupancy to two specific wave vectors, zero and approximately 3.9x10(4) cm(-1), is observed under conditions of continuous wave excitation of a semiconductor microcavity. The "condensation" of the polaritons to the two specific states arises from stimulated scattering at final state occupancies of order unity. The stimulation phenomena, arising due to the bosonic character of the polariton quasiparticles, occur for conditions of resonant excitation of the lower polariton branch. High energy nonresonant excitation, as in most previous work, instead leads to conventional lasing in the vertical cavity structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...