Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(9): e0203444, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183759

RESUMO

Honey bee populations have been declining precipitously over the past decade, and multiple causative factors have been identified. Recent research indicates that these frequently co-occurring stressors interact, often in unpredictable ways, therefore it has become important to develop robust methods to assess their effects both in isolation and in combination. Most such efforts focus on honey bee workers, but the state of a colony also depends on the health and productivity of its queen. However, it is much more difficult to quantify the performance of queens relative to workers in the field, and there are no laboratory assays for queen performance. Here, we present a new system to monitor honey bee queen egg laying under laboratory conditions and report the results of experiments showing the effects of pollen nutrition on egg laying. These findings suggest that queen egg laying and worker physiology can be manipulated in this system through pollen nutrition, which is consistent with findings from field colonies. The results generated using this controlled, laboratory-based system suggest that worker physiology controls queen egg laying behavior. Additionally, the quantitative data generated in these experiments highlight the utility of the system for further use as a risk assessment tool.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Oviposição/fisiologia , Pólen , Animais , Feminino
2.
Lab Chip ; 18(6): 944-954, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29469138

RESUMO

Crystallization of membrane proteins is a critical step for uncovering atomic resolution 3-D structures and elucidating structure-function relationships. Microseeding, the process of transferring sub-microscopic crystal nuclei from initial screens into new crystallization experiments, is an effective, yet underutilized approach to grow crystals suitable for X-ray crystallography. Here, we report simplified methods for crystallization of membrane proteins that utilize microseeding in X-ray transparent microfluidic chips. First, a microfluidic method for introduction of microseed dilutions into metastable crystallization experiments is demonstrated for photoactive yellow protein and cytochrome bo3 oxidase. As microseed concentration decreased, the number of crystals decreased while the average size increased. Second, we demonstrate a microfluidic chip for microseed screening, where many crystallization conditions were formulated on-chip prior to mixing with microseeds. Crystallization composition, crystal size, and diffraction data were collected and mapped on phase diagrams, which revealed that crystals of similar diffraction quality and size typically grow in distinct regions of the phase diagram.


Assuntos
Proteínas de Membrana/química , Técnicas Analíticas Microfluídicas , Cristalização , Tamanho da Partícula , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...