Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165644, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37495130

RESUMO

Water-soluble organic carbon (WSOC) has been identified as a key component in atmospheric aerosols due to its ability to act as cloud condensation nuclei (CCN) owing to their highly hygroscopic nature. This paper discusses about the spatio-temporal variability in WSOC mass concentration, sources (primary and secondary contributions), the role of long-range air-mass transport in modulating their abundance, at distinct sectors over South Asia. We found from our observations that, photochemical ageing of primary organic aerosols that are derived from biomass emissions, significantly contribute to the total WSOC budget over South Asia. The wide range of water-soluble compounds released by biomass burning can contribute directly to the WSOC fraction or undergo further atmospheric processing, such as oxidation or ageing, leading to the formation of additional WSOC. WSOC/OC (organic carbon) ratio and the correlation between the WSOC and secondary organic carbon (SOC) are used for assessing the contribution from secondary sources. The three different ratios are used to delineate different source processes; OC/EC (elemental carbon) for source identification, WSOC/OC for long-range atmospheric transport (ageing) and WSOC/SOC to understand the primary and secondary contribution of WSOC. The present investigation revealed that, the primary OC that have undergone significant chemical processing as a result of long-range transport have a substantial influence on WSOC formation over South Asia, especially in Indo Gangetic Plain outflow regions such as southern peninsular and adjacent marine regions. Overall, oxidation and ageing of primary organic aerosols emitted from biomass burning was found to serve as an important source of WSOC over South Asia.

2.
Sci Total Environ ; 845: 157163, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798104

RESUMO

Tropical coastal regions may provide a unique feature to study the photooxidation of various organic aerosols and their climatic effects because of high humid atmosphere and intense solar radiation. However, knowledge about organic molecular composition and its light absorption properties remains concealed, particularly over tropical Indian regions. The present study is an investigation on water-soluble dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, brown carbon (BrC), and other chemical species in PM1.1 collected at a coastal urban location (Kochi) on the west coast of tropical India under distinct air masses. Molecular distribution of dicarboxylic acids was characterized by the predominance of oxalic acid (C2) in all the air masses followed by adipic (C6) or terephthalic (tPh) and phthalic (Ph) acids. On average, total diacids-C accounted for 5.03 ± 1.01 % of TC. Total diacid concentration showed strong linear relationships with organic (OC), elemental carbon (EC), and non-sea-salt potassium (nss-K+). Except for the northwest (NW) air mass period, the concentration of C2 diacid and its ratios (C2/total diacids, C2/ωC2, C2/Gly) showed a strong linear relationship with nss-SO42-. By combining all these results together with Pearson correlation analysis, the present study demonstrates that organic aerosols over the study region were predominantly produced by aqueous-phase oxidation of precursor compounds derived from biomass burning and combustion-related emissions. The mass absorption coefficient of BrC (babs-BrC-365nm) was strongly correlated with nss-K+, implying that biomass burning emissions are major sources of BrC. The absorption angstrom exponent (AÅE) values of water (methanol) extracts ranged from 3.20 to 3.83 (3.05-4.55) during the entire sampling period, indicating the substantial contribution of BrC chromophores to light absorption over the region. On average, BrC absorbs 10.6 ± 6.4 % and 22.4 ± 5.75 % of solar radiation compared to BC in water and methanol extracts, respectively, suggesting that BrC is a significant aerosol climate forcing agent over the west coast of tropical India.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Ácidos Dicarboxílicos , Monitoramento Ambiental/métodos , Metanol , Material Particulado/análise , Água/química
3.
Sci Total Environ ; 763: 142967, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33143921

RESUMO

Trace elements in atmospheric particulate matter play a significant role in air quality, health and biogeochemical cycles. The present study reports on geochemical characteristics of size-resolved trace elements in PM10 aerosols collected under different air masses over a coastal urban location in peninsular India. A contrast in elemental distribution was observed for the particle size above 7.0 µm and below 1.1 µm under the influence of northeasterly air masses as characterized by Al > Fe > Zn and Fe > Al > Zn, respectively. The concentrations of the crustal elements (Al, Fe, Ti, P, Ba, Co) were high and illustrated by a unimodal size distribution with a peak in coarse mode (>2.0 µm) during northwesterly air masses. On the other hand, combustion-derived metals (Cu, Zn, Cd, Sb, and Pb) were maximized under northeasterly air masses, characterized by unimodal size distribution with a peak in fine mode (<2.0 µm). The enrichment factor (EF) analysis reveals the contribution of anthropogenic emissions to Cd, Sb, Pb, Zn, Cu, Cr, Ni, As, and Sn metals, particularly to the high enrichment of trace metals in fine mode. These results suggest that crustal emissions are major sources of trace metals in coarse mode aerosols; whereas combustion derived anthropogenic emissions contribute to the fine mode aerosols. The positive matrix factorization (PMF) analysis revealed that crustal sources (52-90%) were most abundant for particles >7.0 µm, whereas combustion related emissions such as vehicular and traffic sources are predominant for particles <1.1 µm. The present study demonstrates that trace metals in coastal urban aerosols are affected by changes in emission sources/strengths and regional transport of air masses originated from the northeasterly and northwesterly parts of the tropical Indian subcontinent.

4.
Sci Total Environ ; 712: 135214, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31836221

RESUMO

Chemical characterisation of atmospheric aerosols over Arabian Sea (AS) and Indian Ocean (IO) have been carried out during the winter period (January to February 2018) as part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB-2018). Mass concentrations of organic carbon (OC), elemental carbon (EC), water soluble and insoluble OC (WSOC, WIOC), primary and secondary OC (POC, SOC), water-soluble inorganic ions and trace metals have been estimated with a view to identify and quantify the major anthropogenic pollutants affecting the oceanic environments. Aerosol mass loading was found to exhibit strong spatial heterogeneity (varying from 13 to 84 µg m-3), significantly modulated by the origin of air-mass trajectories. Chemical analysis of aerosols revealed the presence of an intense pollution plume over south-eastern coastal Arabian Sea, near to south-west Indian peninsula (extending from ~ 12°N to 0° at 75°E) with a strong latitudinal gradient (~3 µg m-3/deg. from north to south) dominated by anthropogenic species contributing as high as 73% (38% nss-SO42-, 24.2% carbonaceous aerosols (21% Organic Matter, 3.2% EC) and 10% NH4+). Anthropogenic signature over oceanic environment was also evident from the dominance and high enrichment of elements like Zn, Cu, Mn and Pb in trace metals. Long-range transport of air-masses originating from Indo Gangetic Plains and its outflow regions in Bay of Bengal, has been seen over Arabian Sea during winter, that imparted such strong anthropogenic signatures over this oceanic environment. Comparison with previous cruise studies conducted nearly two decades ago shows a more than two-fold increase in the concentration of nss-SO42-, over the continental outflow region in Arabian Sea.

5.
Sci Total Environ ; 656: 1261-1279, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625656

RESUMO

Near-surface atmospheric aerosols (PM10) collected from a tropical coastal location in south-west peninsular Indian region for a duration of 6 years (2012-18) (N = 461) were analysed for carbonaceous aerosol components, the less studied aerosol species. Organic carbon (OC), its water soluble-insoluble (WSOC and WIOC) components, primary-secondary (POC and SOC) fractions and elemental carbon (EC) were examined for understanding the annual, seasonal, day-night variations in abundance pattern along with associated physical and meteorological processes. Total carbonaceous aerosols accounting for 36% of the collected aerosol mass with 31.5% organic matter (OM) and 4.5% EC respectively, exhibited consistent seasonal pattern throughout the study period with high concentration during winter followed by post-monsoon, pre-monsoon and monsoon. Delineation of marine and continental components of carbonaceous species based on their relative dominance during different air-mass periods, shows that while marine aerosols were a combination of natural sources comprising of volatile, semi-volatile species and secondary organics (from marine VOC precursors); the continental aerosols were composed of anthropogenic combustion sources (fossil fuel, biomass emissions etc). Based on the measurements of OC and EC during 2005-09 and 2012-18, their long term trends (for more than a decade) were investigated. Although OC showed an increasing tendency, EC exhibited a decrease with the total carbonaceous aerosols exhibiting a gradual decreasing trend over the years, indicating that they do not strictly reverberate the reported increasing trend observed over north-central parts of India. This can be presumed to be due to the reduced anthropogenic inputs over the location owing to the control measures and policies. The strong convective activity and large scale monsoon phenomena also helps in the effective dispersion of pollutants. Making use of comprehensive measurement of carbonaceous aerosols and the previous measurements of other aerosol components, an improved chemical composition model is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...