Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(39 Suppl 1): i103-i110, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387156

RESUMO

MOTIVATION: Utilizing AI-driven approaches for drug-target interaction (DTI) prediction require large volumes of training data which are not available for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between drug candidate compounds and understudied target proteins with scarce training data. The idea here is to first train a deep neural network classifier with a generalized source training dataset of large size and then to reuse this pre-trained neural network as an initial configuration for re-training/fine-tuning purposes with a small-sized specialized target training dataset. To explore this idea, we selected six protein families that have critical importance in biomedicine: kinases, G-protein-coupled receptors (GPCRs), ion channels, nuclear receptors, proteases, and transporters. In two independent experiments, the protein families of transporters and nuclear receptors were individually set as the target datasets, while the remaining five families were used as the source datasets. Several size-based target family training datasets were formed in a controlled manner to assess the benefit provided by the transfer learning approach. RESULTS: Here, we present a systematic evaluation of our approach by pre-training a feed-forward neural network with source training datasets and applying different modes of transfer learning from the pre-trained source network to a target dataset. The performance of deep transfer learning is evaluated and compared with that of training the same deep neural network from scratch. We found that when the training dataset contains fewer than 100 compounds, transfer learning outperforms the conventional strategy of training the system from scratch, suggesting that transfer learning is advantageous for predicting binders to under-studied targets. AVAILABILITY AND IMPLEMENTATION: The source code and datasets are available at https://github.com/cansyl/TransferLearning4DTI. Our web-based service containing the ready-to-use pre-trained models is accessible at https://tl4dti.kansil.org.


Assuntos
Redes Neurais de Computação , Peptídeo Hidrolases , Software , Aprendizado de Máquina
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36736370

RESUMO

As the number of protein sequences increases in biological databases, computational methods are required to provide accurate functional annotation with high coverage. Although several machine learning methods have been proposed for this purpose, there are still two main issues: (i) construction of reliable positive and negative training and validation datasets, and (ii) fair evaluation of their performances based on predefined experimental settings. To address these issues, we have developed ProFAB: Open Protein Functional Annotation Benchmark, which is a platform providing an infrastructure for a fair comparison of protein function prediction methods. ProFAB provides filtered and preprocessed protein annotation datasets and enables the training and evaluation of function prediction methods via several options. We believe that ProFAB will be useful for both computational and experimental researchers by enabling the utilization of ready-to-use datasets and machine learning algorithms for protein function prediction based on Gene Ontology terms and Enzyme Commission numbers. ProFAB is available at https://github.com/kansil/ProFAB and https://profab.kansil.org.


Assuntos
Benchmarking , Software , Anotação de Sequência Molecular , Algoritmos , Proteínas/metabolismo , Biologia Computacional/métodos
3.
Bioinformatics ; 38(17): 4226-4229, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35801913

RESUMO

SUMMARY: Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location. We used UniProtKB/Swiss-Prot human protein entries and their curated SL annotations as our source data. We connected all disjoint terms in the UniProt SL hierarchy based on the corresponding term relationships in the cellular component category of Gene Ontology and constructed a training dataset that is both reliable and large scale using the re-organized hierarchy. We tested SLPred on multiple benchmarking datasets including our-in house sets and compared its performance against six state-of-the-art methods. Results indicated that SLPred outperforms other tools in the majority of cases. AVAILABILITY AND IMPLEMENTATION: SLPred is available both as an open-access and user-friendly web-server (https://slpred.kansil.org) and a stand-alone tool (https://github.com/kansil/SLPred). All datasets used in this study are also available at https://slpred.kansil.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Proteínas , Humanos , Bases de Dados de Proteínas , Ontologia Genética , Proteínas/genética , Sequência de Aminoácidos , Transporte Proteico , Biologia Computacional/métodos
4.
J Gastrointest Cancer ; 52(4): 1266-1276, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34910274

RESUMO

PURPOSE: Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine. METHODS: In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system. RESULTS: Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCC-associated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs. CONCLUSIONS: We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.


Assuntos
Antineoplásicos/farmacologia , Inteligência Artificial , Carcinoma Hepatocelular/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Biologia Computacional , Humanos , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular
5.
Nucleic Acids Res ; 49(16): e96, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181736

RESUMO

Systemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource. CROssBAR is a comprehensive system that integrates large-scale biological/biomedical data from various resources and stores them in a NoSQL database. CROssBAR is enriched with the deep-learning-based prediction of relationships between numerous data entries, which is followed by the rigorous analysis of the enriched data to obtain biologically meaningful modules. These complex sets of entities and relationships are displayed to users via easy-to-interpret, interactive knowledge graphs within an open-access service. CROssBAR knowledge graphs incorporate relevant genes-proteins, molecular interactions, pathways, phenotypes, diseases, as well as known/predicted drugs and bioactive compounds, and they are constructed on-the-fly based on simple non-programmatic user queries. These intensely processed heterogeneous networks are expected to aid systems-level research, especially to infer biological mechanisms in relation to genes, proteins, their ligands, and diseases.


Assuntos
Biologia Computacional/métodos , Software , Bases de Dados de Compostos Químicos , Bases de Dados Genéticas , Aprendizado Profundo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...