Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 20637-20650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383925

RESUMO

Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.


Assuntos
Carvão Vegetal , Petróleo , Scedosporium , Scedosporium/genética , Scedosporium/metabolismo , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Fungos/metabolismo , Carbono
2.
Environ Pollut ; 335: 122365, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572849

RESUMO

The widespread exploration and exploitation of crude oil has increased the prevalence of petroleum hydrocarbon pollution in the marine and coastal environment. Bioremediation of petroleum hydrocarbons using cell immobilization techniques is gaining increasing attention. In this study, the crude oil degradation performance of bacterial and fungal co-culture was optimized by entrapping both cells in sodium-alginate and polyvinyl alcohol composite beads. Results indicate that fungal cells remained active after entrapment and throughout the experiment, while bacterial cells were non-viable at the end of the experimental period in treatments with the bacterial-fungal ratio of 1:2. A remarkable decrease in surface tension from 72 mN/m to 36.51 mN/m was achieved in treatments with the bacterial-fungal ratio of 3:1. This resulted in a significant (P < 0.05) total petroleum hydrocarbon (TPH) removal rate of 89.4%, and the highest degradation of n-alkanes fractions (from 2129.01 mg/L to 118.53 mg/L), compared to the other treatments. Whereas PAHs removal was highest in treatments with the most fungal abundance (from 980.96 µg/L to 177.3 µg/L). Furthermore, enzymes analysis test revealed that catalase had the most effect on microbial degradation of the target substrate, while protease had no significant impact on the degradation process. High expression of almA and PAH-RHDa genes was achieved in the co-culture treatments, which correlated significantly (P < 0.05) with n-alkanes and PAHs removal, respectively. These results indicate that the application of immobilized bacterial and fungal cells in defined co-culture systems is an effective strategy for enhanced biodegradation of petroleum hydrocarbons in aqueous systems.


Assuntos
Acinetobacter , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Scedosporium , Petróleo/análise , Scedosporium/metabolismo , Técnicas de Cocultura , Hidrocarbonetos/metabolismo , Alcanos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Heliyon ; 9(2): e13296, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816258

RESUMO

Micro-and nanoplastics (MNPs) are particles that are smaller than a millimeter in size and have infiltrated both terrestrial and aquatic ecosystems. MNPs pollution have become a widespread problem causing severe adverse effects on human health and the environment worldwide. Once in the environment, these polymers are not easily degradable due to their recalcitrant nature and small size and are easily consumed by aquatic organisms and transported through the food chain, at great risk to human health. Substantial evidence demonstrates the negative effects of MNPs residues on aquatic organisms' reproductive and developmental defects. Similarly, soil flora, soil quality, and plant height have been severely impacted by their presence in the agroecosystem. This is evident in the inhibition of water absorption by blocked seed pores, delayed germination, and the dramatic decline in transpiration rates and growth of plant roots, inevitably leading to drop in biomass and crop production, posing an overall threat to global food security. In this review, we present the impact of MNPs in agroecosystems around the globe, including their sources, occurrence, distribution, transport, and ultimate fate. We recommend using bio-based plastics, eco-friendly remediation strategies, reformed agricultural practices, non-single-use synthetic plastic legislation, and increased plastic waste disposal awareness campaigns as effective tools to mitigate this problem.

4.
Heliyon ; 8(11): e11562, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36425429

RESUMO

Africa is a large continent ranked amongst the top consumer of plastic materials. However, the improper handling of plastic wastes has resulted in massive pollution of different aspects of the environment (water, soil, sediments, air, food, etc.) within and around the region. The fragmentation and biodegradation of the bulk plastic material into small-sized particles has given rise to microplastic and nanoplastics. Owing to their small sizes, ease of transport, and large surface area, they tend to wreak serious havoc in the environment. Nevertheless, the growing awareness of the pollution problems caused by micro/nanoplastic debris is instrumental towards circumventing its widespread across the ecosystem. This review provides a state-of-the-art information on the prevailing nanoplastic surge across the borders of Africa, the ineffective management policies of plastic wastes, potential environmental hazards, and possible remediation strategies. Additionally, prospective insights into new areas for advanced research were highlighted.

5.
Environ Sci Pollut Res Int ; 29(46): 69241-69274, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969340

RESUMO

Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.


Assuntos
Organismos Aquáticos , Vacinas , Antibacterianos , Aquicultura , Resistência Microbiana a Medicamentos , Ecossistema , Nanotecnologia
6.
Chemosphere ; 302: 134870, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537625

RESUMO

Fracturing flowback fluids (FFFs), which is generated from the process of oil and gas exploitation, is one of the major environmental concerns. In this study, a bacterial strain, Bacillus sp. SS15, capable of producing both bioflocculant (BF) and biosurfactant (BS), was isolated from oil-contaminated mudflat sediment. The BS produced by SS15 was identified as lipopeptide, which could reduce the surface tension of water from 74.2 mN/m to 36.6 mN/m with a critical micelle concentration of 44.4 mg/L. It also exhibited strong tolerance against a wide range of pH (2-12), temperature (4-60 °C), and salinity (0-100 g/L). Meanwhile, the BF produced by SS15 exhibited high flocculating activity (84.9%) for kaolin suspension, and was confirmed to be thermostable, salt-tolerant, and alkaliphilic. The combined treatment of bioremediation (introducing SS15 and BS) followed by flocculation (introducing BF) greatly promoted the removal of chroma (85.7% reduction), suspended solids (94.4% reduction), chemical oxygen demand (84.9% reduction), n-alkanes (50.0% reduction), and polycyclic aromatic hydrocarbons (66.5% reduction), respectively. The genome analysis showed that strain SS15 possessed abundant genes related to the synthesis of carbohydrate, protein, and lipid, which might play an important role in BF and BS synthesis. The findings in this study demonstrated that Bacillus sp. SS15 has promising prospect in the remediation of FFFs.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Biodegradação Ambiental , Floculação , Lipopeptídeos , Tensão Superficial , Tensoativos/metabolismo
7.
World J Microbiol Biotechnol ; 38(4): 68, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247078

RESUMO

Biosurfactants (BSs) are known for their remarkable properties, however, their commercial applications are hampered partly by the high production cost. To overcome this issue, a biosurfactant producing strain, Rhodotorula sp.CC01 was isolated using landfill leachate as nitrogen source, while olive oil was determined as the best sole carbon source. The BS produced by Rhodotorula sp.CC01 had oil displacement diameter of 19.90 ± 0.10 cm and could reduce the surface tension of water to 34.77 ± 0.63 mN/m. It was characterized as glycolipids by thin layer chromatography, FTIR spectra, and GC-MS analysis, with the critical micelle concentration of 70 mg/L. Meanwhile, the BS showed stability over a wide range of pH (2-12), salinity (0-100 g/L), and temperature (20-100 °C). During the cultivation process, BS was produced with a maximum rate of 163.33 mg L-1 h-1 and a maximum yield of 1360 mg/L at 50 h. In addition, the removal efficiency of NH4+-N reached 84.2% after 75 h cultivation with a maximum NH4+-N removal rate of 3.92 mg L-1 h-1. Moreover, Rhodotorula sp.CC01 has proven to be of great potential in remediating petroleum hydrocarbons, as revealed by chromogenic assays. Furthermore, genes related to nitrogen metabolism and glycolipid metabolism were found in this strain CC01 after annotating the genome data with KEGG database, such as narB, glycoprotein glucosyltransferase, acetyl-CoA C-acetyltransferase, LRA1, LRA3, and LRA4. The findings of this study prove a cost-effective strategy for the production of BS by yeast through the utilization of landfill leachate.


Assuntos
Petróleo , Rhodotorula , Poluentes Químicos da Água , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Nitrogênio/metabolismo , Petróleo/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo , Tensoativos/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Chemosphere ; 290: 133337, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933030

RESUMO

Microbial remediation has proven to be an effective technique for the cleanup of crude-oil contaminated sites. However, limited information exists on the dynamics involved in defined co-cultures of biosurfactant-producing bacteria and fungi in bioremediation processes. In this study, a fungal strain (Scedosporium sp. ZYY) capable of degrading petroleum hydrocarbons was isolated and co-cultured with biosurfactant-producing bacteria (Acinetobacter sp. Y2) to investigate their combined effect on crude-oil degradation. Results showed that the surface tension of the co-culture decreased from 63.12 to 47.58 mN m-1, indicating the secretion of biosurfactants in the culture. Meanwhile, the degradation rate of total petroleum hydrocarbon increased from 23.36% to 58.61% at the end of the 7-d incubation period. In addition, gas chromatography - mass spectrometry analysis showed a significant (P < 0.05) degradation from 3789.27 mg/L to 940.33 mg/L for n-alkanes and 1667.33 µg/L to 661.5 µg/L for polycyclic aromatic hydrocarbons. Moreover, RT-qPCR results revealed the high expression of alkB and CYP52 genes by Acinetobacter sp. Y2 and Scedosporium sp. ZYY respectively in the co-culture, which corelated positively (P < 0.01) with n-alkane removal. Finally, microbial growth assay which corresponded with Fluorescein diacetate hydrolysis activity, highlighted the synergistic behavior of both strains in tackling the crude oil. Findings in this study suggest that the combination of fungal strain and biosurfactant-producing bacteria effectively enhances the degradation of petroleum hydrocarbons, which could shed new light on the improvement of bioremediation strategies.


Assuntos
Petróleo , Bactérias/genética , Biodegradação Ambiental , Técnicas de Cocultura , Fungos , Hidrocarbonetos , Tensoativos
9.
Sci Total Environ ; 811: 152414, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923009

RESUMO

This research comprises a comparative study of the properties, rhl genes expression, and structural difference in rhamnolipids produced under different oxygen conditions via Pseudomonas sp. CH1. The critical micelle concentration (CMC) of rhamnolipids produced under aerobic conditions (RAO) was 100 mg/L. In contrast, rhamnolipids produced under anaerobic conditions (RNO) had a low CMC of 40 mg/L. RNO comprised six rhamnolipids homologs, and the proportion of mono-rhamnolipids was up to 87.83%; meanwhile, the percent ratio of di-rhamnolipids and mono-rhamnolipids in RAO was 63.1:36.9. Additionally, diversified applications for solubilization of hydrophobic pollutants and reduction in heavy oil viscosity were investigated. The addition of RNO greatly enhanced the solubility of phenanthrene in water, from 1.29 mg/L to 193.14 mg/L, a 148.7-fold increase. Moreover, the viscosity of heavy oil decreased by over 90% for both kinds of rhamnolipids, whereas RAO effectively reduced the viscosity even at a low temperature (10 °C). The findings of this study provide insights into the versatile potential applications of rhamnolipids produced under different oxygen conditions.


Assuntos
Pseudomonas aeruginosa , Tensoativos , Anaerobiose , Glicolipídeos
10.
J Environ Manage ; 292: 112758, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030015

RESUMO

This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.


Assuntos
Plásticos , Gerenciamento de Resíduos , Egito , Marrocos , Nigéria , África do Sul , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...